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Monitoring and modelling crowd movement enables a plethora of applications.
Crowd-movement analysis has classically been done manually, only at large
scales (spatial and temporal) and based on small samples. By automating the
process, we can dramatically increase the sample size, the amount of data. WiFi
remote-positioning is currently the most popular technology to achieve this
goal. However, not enough research has been conducted in order to understand
the quality of the data generated through WiFi remote-positioning. This thesis
aims to address the issue and raise a warning light regarding the technology.
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Abstract

Monitoring and modeling crowd movement enables a plethora of applications.
Understanding crowd dynamics can help us enhance our cities by enabling
improved facility planning and by directing better policies. Crowd monitoring
can help prevent disasters and for those that happened, assist and improve
with response. Furthermore, many commercial applications spanning from
business analytics to marketing, to name just a few examples, make use of
crowd monitoring while many more are being added as we develop smart
cities.

Crowd-movement analysis has classically been done manually, only at large
scales (spatial and temporal) and based on small samples. By automating the
process, we can dramatically increase the sample size, the amount of data, and
as such be able to infer granular movements, previously unmeasurable. This
allows us to build better crowd-dynamics models. Many technologies have
appeared that automate mobile-data gathering. Out of these, WiFi remote-
positioning (a technique for using a set of sensors to record positions of all
individuals carrying WiFi devices, such as smartphones) appears to be the
most recent and popular as it promises to offer a balance between deployment
price, the crowd’s size (number of individuals) of what can be monitored, and
positional accuracy.

We have studied the existing literature and conducted our own WiFi remote-
positioning data-gathering experiments in order to understand the complete-
ness, or lack thereof, and granularity of movements that can be described using
the technology. We focus on understanding what are the benefits and which are
the limitations of WiFi remote-positioning by decreasing the size of the covered
area to a city center (or campus), and the time period to that of a day. This
restricts us to observing short movements, such as going to work, shopping
or moving between classes, as a few examples. Our self-imposed restrictions
follow from our concern for preserving privacy. This can be translated into our
main research question: To what extent can we model crowd dynamics based
on current positioning technologies?
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Positioning based on WiFi is known to be biased as it cannot be used for
individuals that do not carry WiFi devices. On top of that, our analysis shows
that the information extracted from WiFi remote-positioning data sets is under-
whelming compared to the public attention that surrounds the technology This
is based on several different data sets that we collected. Detections are sparse
and low spatial accuracy introduces difficult to circumvent anomalies that hide
detailed movements. For most detected devices, we do not have enough data to
identify even a single movement. For others, we can trace only few movements.
Most movements are hidden by anomalies that resemble a movement in circles.

In order to mitigate the anomalies, we have developed and extensively
measured the effectiveness of techniques to smooth traces as well as methods
to extract information from positioning data in the form of stops and moves.
Although these techniques managed to improve the quality of the data and
make it more usable, there are limits to how effective they were.

Our attempts to improve the results by adding more sensors backfired. Not
only did the amount of information not increase by adding more sensors, but
we also discovered we could obtain the same results with fewer. This has
the advantage of potentially lowering the financial cost for deploying WiFi
remote-positioning platforms.

We explored the use of alternative data sources for WiFi remote position-
ing, as opposed to the widely adopted use of Probe Request frames (a specific
data packet transmitted by WiFi devices). Analysis of positions based on WiFi
connection logs showed that they contain a significant amount of information
not extracted by most WiFi remote-positioning platforms. This raises questions
about the bias of WiFi remote-positioning deployments. As our research un-
covered, it is likely that many WiFi remote-positioning data sets do not include
positioning data for periods when devices are connected to a network.



Samenvatting

Monitoring en modellering van menigtebewegingen maakt een overvloed aan
toepassingen mogelijk. Inzicht in de dynamiek van de menigte kan ons helpen
onze steden te verbeteren door een betere planning van de faciliteiten mogelijk
te maken en door een beter beleid te sturen. Monitoring van mensenmassa’s
kan rampen helpen voorkomen en voor degenen die zijn gebeurd, helpen en
verbeteren met respons. Bovendien maken veel commerciële toepassingen,
variërend van bedrijfsanalyse tot marketing, om maar een paar voorbeelden
te noemen, gebruik van monitoring van voetgangers terwijl er nog veel meer
worden toegevoegd bij het ontwikkelen van slimme steden.

Bewegingsanalyse van voetgangers is doorgaans altijd handmatig gedaan,
alleen op grote schaal (ruimtelijk en tijdelijk) en op basis van kleine steekproeven.
Door het proces te automatiseren, kunnen we de steekproefomvang en de
hoeveelheid gegevens drastisch vergroten en zo granulaire bewegingen afleiden
die eerder onmeetbaar waren. Hiermee kunnen we betere modellen bouwen.
Er zijn veel technologieën verschenen die het verzamelen van mobiele gegevens
automatiseren. Hiervan lijkt WiFi-positionering op afstand (een techniek voor
het gebruik van een verzameling sensoren voor het opnemen van posities
van alle personen met WiFi-apparaten, zoals smartphones) de meest recente
en populaire omdat het belooft een evenwicht te bieden tussen de prijs, de
grootte van de menigte (aantal personen) van wat kan worden gemonitord, en
positionele nauwkeurigheid.

We hebben de bestaande literatuur bestudeerd en onze eigen experimenten
voor het verzamelen van gegevens op afstand op basis van WiFi uitgevoerd
om de volledigheid of het gebrek daaraan en de granulariteit van bewegingen
te begrijpen die met behulp van de technologie kunnen worden beschreven.
We richten ons op het begrijpen van de voordelen en de beperkingen van WiFi-
positionering op afstand door de grootte van het overdekte gebied tot een stads-
centrum (of campus) te verkleinen, en de tijdsperiode tot die van een dag. Dit
beperkt ons tot het observeren van korte bewegingen, zoals naar het werk gaan,
winkelen of tussen colleges gaan, als een paar voorbeelden. Onze zelfopgelegde
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beperkingen vloeien voort uit onze zorg voor het behoud van privacy. Dit kan
worden vertaald in onze hoofdvraag: textbf In hoeverre kunnen we mensen
massa’s modelleren op basis van huidige positioneringstechnologieën?

Het is bekend dat positionering op basis van WiFi bevooroordeeld is, om-
dat deze niet kan worden gebruikt voor personen die geen WiFi-apparaten
hebben. Bovendien blijkt uit onze analyse dat de informatie die is geëxtraheerd
uit de gegevens voor positionering op afstand via WiFi, overweldigend is in
vergelijking met de publieke aandacht voor de technologie. Dit is gebaseerd op
verschillende gegevens die we hebben verzameld. Detecties zijn schaars en lage
ruimtelijke nauwkeurigheid introduceert moeilijk te omzeilen afwijkingen die
gedetailleerde bewegingen verbergen. Voor de meeste gedetecteerde apparaten
hebben we onvoldoende gegevens om zelfs maar één beweging te identificeren.
Voor anderen kunnen we slechts enkele bewegingen traceren. De meeste be-
wegingen worden verborgen door anomalieën die lijken op een beweging in
cirkels.

Om de afwijkingen te verminderen, hebben we de effectiviteit van tech-
nieken om sporen te verzachten en methoden om informatie uit positiegegevens
te extraheren in de vorm van stops en bewegingen, ontwikkeld en uitgebreid
gemeten. Hoewel deze technieken erin geslaagd zijn om de kwaliteit van de
gegevens te verbeteren en bruikbaarder te maken, zijn er grenzen aan hoe
effectief ze waren.

Onze pogingen om de resultaten te verbeteren door meer sensoren achteraf
toe te voegen. Niet alleen nam de hoeveelheid informatie niet toe door meer
sensoren toe te voegen, maar we ontdekten ook dat we met minder dezelfde
resultaten konden bereiken. Dit heeft het voordeel dat de financiële kosten
voor het gebruik van externe WiFi-positioneringsplatforms mogelijk worden
verlaagd.

We hebben het gebruik van alternatieve gegevensbronnen voor WiFi-posi-
tionering op afstand onderzocht, in tegenstelling tot het alom geaccepteerde
gebruik van Probe Request-frames (een specifiek datapakket verzonden door
WiFi-apparaten). Analyse van posities op basis van WiFi-verbindingslogboeken
toonde aan dat deze een aanzienlijke hoeveelheid informatie bevatten die niet
werd geëxtraheerd door de meeste externe WiFi-positioneringsplatforms. Dit
roept vragen op over de vertekening van implementaties van WiFi-positionering
op afstand. Zoals ons onderzoek aan het licht heeft gebracht, is het waarschijn-
lijk dat veel WiFi-gegevens voor positionering op afstand geen plaatsbepalings-
gegevens bevatten gedurende perioden waarin apparaten zijn verbonden met
een netwerk.



Abstract

Monitorizarea s, i modelarea mis, cării mult, imilor permite o multitudine de apli-
cat,ii. Înt,elegerea dinamicii mult,imilor ne poate ajuta să îmbunătăt,im oras, ele,
permit,ând o eficientizare a planificării infrastructurii s, i direct,ionând politici
mai bune. Monitorizarea mult,imilor poate ajuta la prevenirea gestionarea
dezastrelor prin îmbunătăt,irea timpului de răspuns. Mai mult, numeroase
aplicat,ii comerciale, de la analiza business-ului până la marketing, pentru a
numi doar câteva exemple, se folosesc monitorizarea mult, imilor. Alte aplicat, ii
se dezvoltă pe măsură ce dezvoltăm oras, e inteligente – smart cities.

Analiza mis, cării mult,imilor a fost executată manual, la scară mare (atât
spat, ial cât s, i temporal) s, i pe baza unor seturi mici de date. Prin automatizarea
procesului, putem cres, te dramatic dimensiunea es, antionului, cantitatea de date
s, i, astfel, putem deduce mis, cări granulare, care anterior nu au putut fi măsurate.
Acest lucru ne permite să construim modele mai bune de dinamică a mult, imilor.
Recent, au apărut multe tehnologii care automatizează colectarea datelor mobile.
Dintre acestea, pozit,ionarea la distant, ă efectuată prin WiFi (o tehnică pentru
utilizarea unui set de senzori pentru a înregistra pozit,iile tuturor persoanelor
care transportă dispozitive WiFi, cum ar fi telefoanele inteligente - smartphone-
urile) pare a fi cea mai populară, deoarece promite să ofere un echilibru între
costul unei astfel de platforme, dimensiunea mult,imii (numărul de indivizi) a
ceea ce poate fi monitorizat s, i precizia pozit, ională.

Am studiat literatura existentă s, i am realizat propriile noastre experimente
de colectare a datelor de la distant, ă folosind WiFi pentru a înt,elege completi-
tudinea datelor, sau lipsa acestora, s, i granularitatea mis, cărilor care pot fi de-
scrise folosind această tehnologie. Ne concentrăm pe a înt,elege care sunt avan-
tajele s, i care sunt limitările pozit, ionării la distant, ă folosind WiFi prin scăderea
dimensiunii zonei monitorizate la cea a unui centru de oras, (sau campus) s, i pe-
rioada de timp până la cea a unei zile. Acest lucru ne restrict, ionează să observăm
mis, cări scurte, cum ar fi mersul la muncă, cumpărăturile sau mutarea între clase,
ca fiind exemple. Restrict, iile noastre autoimpuse rezultă din preocuparea noas-
tră pentru garantarea viet, ii private a persoanelor care sunt monitorizate. Acest
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lucru poate fi tradus în principala noastră întrebare de cercetare: În ce măsură
putem modela dinamica mult,imilor bazată pe tehnologiile de pozit,ionare
actuale?

Pozit,ionarea bazată pe WiFi este cunoscută ca oferind date incomplete,
deoarece nu poate fi utilizată pentru monitorizarea persoanele care nu poartă
dispozitive WiFi. În plus, analiza noastră arată că informat,iile extrase din
seturile de date de pozit, ionare de la distant, ă folosind WiFi sunt dezamăgitoare
în comparat, ie cu atent, ia publică care înconjoară tehnologia. Această concluzie
se bazează pe analiza mai multor seturi de date, foarte diferite, pe care le-am
colectat. Detect, iile rare s, i precizia spat, ială scăzută introduce anomalii dificil de
evitat care ascund mis, cări detaliate. Pentru majoritatea dispozitivelor detectate,
nu avem suficiente date pentru a identifica nici măcar o singură mis, care. Pentru
altele, putem urmări doar put,ine mis, cări. Majoritatea mis, cărilor sunt ascunse
de anomalii care seamănă cu o plimbare în cercuri.

Pentru a atenua anomaliile, am dezvoltat s, i am măsurat pe larg eficacitatea
tehnicilor pentru simplificarea traseelor, precum s, i metode pentru extragerea
informat,iilor sub formă de opriri s, i mis, cări. Des, i aceste tehnici au reus, it să
îmbunătăt,ească calitatea datelor s, i să le facă mai utilizabile, există limite asupra
cât de eficiente au fost acestea.

Încercările noastre de a îmbunătăt, i rezultatele adăugând mai mult, i senzori
au es, uat. Nu numai că nu am crescut cantitatea de informat,ie prin adăugarea
mai multor senzori, dar am descoperit, de asemenea, că putem obt, ine aceleas, i
rezultate cu mai put,ine. Această descoperire prezintă avantajul de a reduce
potent, ial costurile financiare pentru implementarea platformelor de pozit, ionare
la distant, ă folosind WiFi.

Am explorat utilizarea surselor de date alternative pentru pozit,ionarea la
distant, ă folosind WiFi, spre deosebire de utilizarea pe scară largă a cadrelor de
tip Probe Request (un pachet de date specific transmis de dispozitivele WiFi).
Analiza pozit,iilor bazate pe jurnalele de conexiune WiFi a arătat că acestea
cont, in o cantitate semnificativă de informat, ii care nu sunt extrase de majoritatea
platformelor de pozit, ionare la distant, ă folosind WiFi. Acest lucru ridică întrebări
cu privire la rezultatele implementărilor de pozit,ionare la distant, ă folosind
WiFi. În concluzie, este foarte probabil ca multe seturi de date de pozit, ionare la
distant, ă folosind WiFi să nu includă date de pozit,ionare pentru perioadele în
care dispozitivele sunt conectate la o ret,ea.
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CHAPTER 1

Introduction

Mobility has influence on a large variety of factors that affect human life [1]. A
prime example would be the shape, size, and feel of our cities. These features
are dictated by the dynamics of inhabitants. Cities have evolved throughout
history, in an organic way, remaining in par with transportation technologies.
Considering this, it comes as no surprise that urban and facility planning is
heavily concerned with mobility.

It is not only the architecture of our cities that is affected by mobility, but
also geopolitics and, in turn, our economic and social structures. Furthermore,
human mobility has a direct impact on the environment, for example through
pollution produced by cars or planes. Even our safety and security is swayed by
mobility through events (such as crowds trying to get out of a burning building)
or biologic factors (such as the spread of diseases through a population).

The advent of increasing feasibility of automatically gathering and analyzing
urban data has led to what are generally called smart cities. Data on pedestrian
dynamics is an important component of urban data. Concentrating on mobility,
we can imagine living in cities where the transportation becomes more efficient
and adapts to the real-time needs of the inhabitants; where the schedule of
businesses or public institutions changes in order to make them available so that
they can serve the largest number of people; where during emergencies the flows
of people are optimized so that the biggest number of lives are saved; where
search and rescue has tools that permit them to best utilize their resources; where
we build stronger, more inclusive communities; where energy is saved and
pollution is reduced through fine control of our utilities (e.g. street illumination).

Facility planning, smart cities, marketing, tourism and entertainment are just
a few examples of fields that can benefit from understanding mobility, or more
precisely, the dynamics of crowds. As such, monitoring and modeling crowd
dynamics becomes more important than ever. All the applications we described
previously are dependent, or can be improved, given crowd-dynamics infor-
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mation. Information which so far has been gathered using slow and inefficient
means, such as having someone count or manually track people.

Crowd dynamics can be represented by the total of position changes for all,
or a sample of individuals. This type of data is relevant only at the level of
crowds or groups of people. However, classical positioning technologies, such as
GPS, are aimed at the individual. They are intrusive and raise important privacy
concerns. What is worse is that this intrusiveness makes them impossible to
scale to large crowds.

The popularity of smartphones and the wide adoption of a handful of
communication protocols potentially enables nonintrusive positioning for large
masses of individuals. These technologies are intrinsically privacy sensitive
when used for positioning compared to other methods, such as the use of video
recordings (we will discuss this more in the next chapter).

Although multiple companies, applications and significant research makes
use of these positioning and monitoring technologies based on existing commu-
nication protocols, their outputs are not completely understood. This brings us
to our main research question:

To what extent can we model outdoor crowd dynamics based on current
positioning technologies?

1.1 Contributions

Our main research question can be broken into several smaller ones. Firstly,
to determine the extent to which we can model crowd dynamics we need to
identify the most suited positioning technology. This brings us to the first
research question:

Question 1: Which positioning technology can be used to provide the highest
amount of data for the highest number of individuals, and, as such, is best suited for
monitoring crowd dynamics?
•Chapter 2: To answer our first question we conduct a survey of positioning

systems. Positioning data has a large variety of applications and no available
solution is perfect or suitable for all. For example, GPS, the most popular posi-
tioning system, does not work indoors. This has triggered the implementation
of multiple alternatives, each with advantages and disadvantages.

Our survey shows WiFi remote positioning as the most promising technology
for crowd-dynamics analysis due to the relative ease at which it automatically
collects data in a nonintrusive manner. This allows it to scale to large amounts
of data for many individuals. Having this answer, we can address four ques-



1.1 Contributions 3

tions (2, 3, 5 and 6), which combined offer a response our main research problem.

Question 2: How is WiFi remote positioning implemented and what are the current
applications it is used for?
• Chapter 2: To gain an insight in the capabilities of this technology we con-

duct a survey on current applications of WiFi remote positioning and imple-
ment our own WiFi remote-positioning systems. During the implementation
we discover essential details, in the form of possible configuration parameters
and properties of the resulting data, that have not been thoroughly explored in
the literature.

Our description of WiFi remote-positioning methods are based on our ex-
periences with WiFi crowd-dynamics monitoring platforms. We conducted five
data-gathering experiments in three cities resulting in data sets that describe
cumulatively the movements of hundreds of thousands of individuals for a time
period of a month. The answer to the next research question is based on these
data sets and our experiences.

Question 3: What are the properties of traces extracted from data produced by WiFi
remote-positioning systems?
• Chapter 2: We conduct analysis on the data set, both at an aggregated

and at a per-trace level. During this analysis and based on visualization of
traces we observed that WiFi remote positioning generates traces that are sparse
and contain various anomalies. This brings another question (4).

Question 4: Why are the traces sparse and what are the cyclic-movement anoma-
lies we observe? How can we mitigate the effect caused by said anomalies?
• Chapter 3: In order to understand the sparsity and anomalies we start by

analyzing basic properties of the WiFi remote-positioning technology. We go
into details on the positional accuracy and frequency of detections. We show
that these properties cause traces to contain an abundance of anomalies that
can best be described as ”moving in circles“. These anomalies are not particu-
lar to WiFi remote positioning but are also common for traces obtained with
different technologies, such as GPS. However, the anomalies are more prob-
lematic for WiFi remote positioning as they appear at a much larger scale. We
develop three solutions that smooth traces, which can be used to manage the
anomalies. Alongside, we develop metrics based on entropy and dissimilarity
that describe the effectiveness of our smoothing algorithms.

Question 5: What useful information can be extracted from positioning data in order
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to build crowd-dynamics models and how can we quantify this information?
• Chapter 4: Crowd-dynamics models require movement information from

many individual traces. However, a trace may contain many superfluous data
points. Because of this, the amount of information on crowd dynamics cannot
be correlated to the amount of data generated by the positioning technology.
An extensive research through the existing literature has revealed periods of
stops of moves to be the most relevant type of information for crowd-dynamics
models.

We identified and adapted algorithms developed to extract information
from GPS traces (algorithms that identify periods of stops and moves) to work
with WiFi remote-positioning data sets. The resulting sets of stops and moves
can be used to describe crowd dynamics in a simple and concise way. This
enables their use in conducting complex analyses. Furthermore, stops and
moves represent the total information that can be extracted from WiFi remote
positioning traces. Using the number of stops and moves as a metric, we can
address our last questions.

Question 6: How much crowd-dynamics information can we extract using WiFi
remote-positioning and how can we increase this value?

In order to increase the amount of crowd-dynamics information, we explore
two possibilities: the effect of the number of sensors and the implementation
of an alternative data source based on WiFi. These are addressed in the final
questions (7 and 8).

Question 7 (part of question 6): Can we increase the amount of crowd-dynamics
information by adding more sensors and as such, increasing the amount of positioning
data?
• Chapter 5: This question is particularly important because a linear corre-

lation between the amount of positioning data and the amount of information
means that any platform based on this technology can be improved given a
higher cost, by simply adding more sensors. We study the effect that the den-
sity of sensors has on the set of stops and moves that describe crowd dynamics.
As stated previously, the set of stops and moves is representative of the amount
of information that can be extracted from WiFi crowd-dynamics data.

Question 8 (part of question 6): Can we increase the amount of crowd-dynamics
information by using alternative WiFi data sources?
• Chapter 6: Most WiFi remote-positioning data sets are gathered by record-

ing Probe Request frames (described in Chapter 2). This was also our initial
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approach, after studying the literature. Later, we discovered that positioning
data can also be successfully obtained from WiFi connection logs.

We conducted a data gathering experiment where we recorded both Probe
Requests and connection logs. In order to fully understand the extent to which
we can model crowd dynamics based on WiFi remote-positioning data we need
to address the problem of completeness. If these two data sets do not offer the
same information, it means each individually is not complete. We know that
we cannot monitor people who do not carry a communication device (WiFi in
our case), but it is not clear how complete is the information extracted for the
other cases.

We compare the two WiFi remote-positioning data sets. Based on the dif-
ferences we show that in most cases more positioning data could have been
gathered and the amount of information increased. This raises questions about
how representative data gathered with WiFi remote positioning is for modeling
crowd dynamics.

1.2 Technical Overview

Positioning is the process of discovering a target’s location relative to one, or
multiple, reference points (also called anchors). By recording timestamped
positions, we can then trace the movement of a target.

In the case of the Global Positioning System [2] (GPS), the most popular po-
sitioning method and the first implementation of a Global Navigation Satellite
System (GNSS), satellites1 are used as reference points. The position of the tar-
get is calculated relative to the satellites and converted to one in the geographic
coordinate system [3] (latitude, longitude, and altitude). The conversion is done
by combining the target’s relative position to the satellites with the position of
the satellites on the geographic coordinate system. The position of the satellites
is known, although continuously changing2. The position changes because the
satellites are not geostationary, meaning their orbits do not match the rotation
speed of the Earth.

A target’s position can be determined by the target itself (self-positioning),
or it can be determined by external entities, possibly the anchors (remote posi-
tioning). If the target is not involved in the positioning process, determining
its location can be difficult. The target can actively help or undermine other
entities from finding it.

1https://www.gps.gov/systems/gps/space/ (accessed April 3, 2019)
2https://www.n2yo.com/satellites/?c=20 (accessed April 3, 2019)

https://www.gps.gov/systems/gps/space/
https://www.n2yo.com/satellites/?c=20
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Positioning is critical to us as individuals and to the multiple systems that
we built which depend on a form of it. However, positioning has always been
difficult (consider finding your way through a new city without GPS, or maps).
Because of its importance, difficulty and the fact that no solution can serve all
requirements, a lot of different positioning technologies have been developed.
Positioning can be achieved by systems that use visual [4], magnetic [5], inertial
[6], electromagnetic [7], acoustic [8] or even olfactory [9] data.

Radio-signal positioning systems work by having the anchors or the target
transmit electromagnetic signals, which are received and used by the other
party. The signals can carry information that can help improve the accuracy of
positioning, like in the case of GPS.

In recent years a new class of radio-signal positioning systems has appeared.
These systems are based on existing and well-established communication pro-
tocols. There are Bluetooth positioning systems [10], WiFi positioning systems
[11], GSM positioning systems [12] and 4G positioning systems [13]. These
systems make use of signals that are already widely used. Smartphones have
all these communication capabilities and are with us all the time. By discover-
ing the position of a smartphone (or similar mobile devices) we discover the
position of the individual carrying it.

Positioning based on communication protocols can take the form of self and
remote positioning. Self-positioning is done by the mobile device (target) which
receives signals from access points (anchor). Remote positioning is done by an
external system or device recording the signals generated by the mobile device.

Because of the prevalence of smartphones, communication protocols can
be used to do remote positioning on large numbers of individuals. This is
possible because these positioning systems make use of the signals already
transmitted by smartphones. This means that the target devices do not have to
be involved, they can be passive and require no modification to their software
or hardware. Alternative techniques to gather positioning data from individuals
(traditionally based on GPS) require their involvement and because of this they
become intrusive and do not scale to many people.

WiFi positioning is a form of radio-signal positioning that uses signals
standardized in the WiFi 802.11 communication protocol family [14]. WiFi
signals are organized as frames and are transmitted and received by both
mobile devices, such as smartphones, tablets or laptops (targets), as well as
static devices, such as WiFi routers or access points (anchors). Positioning
systems can be built on top of WiFi without any modifications to the existing
communication standards.

WiFi is the most interesting of the radio-based communication technologies
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for adaptation into positioning systems because it is popular (WiFi is usually
turned on, compared to Bluetooth which is offline by default) and has a small
transmission range compared to GSM or 4G, resulting in higher positioning
accuracy. Another advantage is that unlike GSM and 4G, WiFi access points are
mass products. This makes WiFi devices cheap and positioning systems based
on WiFi affordable.

WiFi self-positioning is widely used as a low-energy, low-accuracy replace-
ment for GPS [15]. It takes advantage of WiFi access points, acting as static
anchors, which are uniquely identified (to some degree) and have been previ-
ously mapped using wardriving3 [16]. Smartphones having the Android and
iOS operating systems use WiFi for self-positioning [17, 18] taking advantage of
crowd-sourced [19] maps with the positions of WiFi access points (anchors).

The positional accuracy of WiFi self-positioning leads to applications such
as flock detection [20] (detection of groups of people walking together). More
complex applications based on WiFi self-positioning reveal the potential of the
positioning data for conducting movement and social analysis [21]. However,
in all cases of self-positioning the data is limited as few users want to contribute.
The two works (flock detection and social analytics) are based on studies of tens
of individuals.

Gathering long-term positioning data over large areas for many individuals
has proven to offer interesting results. These data sets have been analyzed in
order to extract complex information such as life-pattern analysis [22], social
interactions [23] or facility utilization [24].

The potential of WiFi remote positioning has made it popular and a large
body of research has appeared based on the technology. The expectations are
large, with researchers making claims of the ability of the technology to be used
for crowd-dynamics monitoring and modeling, as early as 2010 [25].

The research reported in this thesis focuses on exploring the potential
and limits of WiFi remote positioning for crowd-dynamics monitoring. We
know that interesting results can be obtained for long time frames, so in or-
der to truly test the limits of WiFi remote positioning we concentrate on de-
termining what information can be extracted from data pertaining to small
time frames (days), over small areas (city center or campus) for many indi-
viduals.

3Wardriving is the process of driving around a city, recording the GPS position where WiFi
access points are detected. It builds a map of WiFi access points
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CHAPTER 2

Positioning and WiFi remote-positioning
systems

There is a large variety of positioning systems. They make use of various modal-
ities of identifying a targets location, going from visual data to electromagnetic
signals. Each has advantages, disadvantages, and different use cases.

New developments bring positioning systems that can be used to monitor
large crowds. This opens the way for smart-city applications, better urban plan-
ning, improved safety, marketing, etc. In this chapter we explore the available
positioning systems and explain why we chose WiFi remote positioning as the
one best suited for crowd-dynamics monitoring.

WiFi remote positioning is already popular for monitoring. We studied
many of the projects that utilized the technology and implemented our own
systems. Using these systems, we gathered multiple data sets. Data sets used to
better understand the capabilities of this technology.

2.1 Contributions

Crowd-dynamics modeling requires many traces obtained by monitoring po-
sitions of many individuals. Traces can be built given a list of timestamped
positions. There are many options when it comes to the choice of positioning
systems. In this chapter we offer a survey of the most popular positioning
systems and describe the properties of each.

One of the most important, recently developed, positioning systems is based
on WiFi. We show how WiFi remote-positioning systems compare with oth-
ers and we describe our implementation of a WiFi remote-positioning sys-
tem, its components and explain how the data-gathering process works, what
are its advantages and disadvantages. We also present the notation that we
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use throughout the thesis.
Although there is now significant literature for WiFi remote positioning, as

to our knowledge, no other work has described many of the details that need
to be considered for WiFi crowd-dynamics monitoring system implementa-
tions. Among those details we consider factors such as the choice of channel.
WiFi uses multiple frequencies and the hardware commonly used for WiFi
platforms can listen only on one frequency at a given time.

Using the crowd-dynamics monitoring system that we described (as well as
similar ones) we perform five data-gathering experiments. These experiments
span over five years, multiple cities and represent different contexts. They total
in data representing a month of positions for hundreds of thousands of individ-
uals. The data obtained from these experiments is used in the other chapters
in order to gain a deeper understanding on the potential and limitations of
using WiFi remote positioning. Preliminary analysis of the raw data offers
some interesting insight on the capabilities and limitations of these systems.
As will be discussed at various points, we have taken care that the privacy
of individuals has been preserved. Secure encryption techniques have been
applied in addition to providing information and opt-out options where appro-
priate. Furthermore, data has been used only for this research, namely for the
purpose of investigating the usability of WiFi remote positioning. The data sets
are destroyed when the thesis is published.

2.2 Survey of popular positioning systems

For the purpose of this thesis we need to identify positioning technologies that
can be used for crowd-dynamics monitoring. By having time-stamped positions
of people, we may be able to trace their movements and multiple movements
can represent crowd dynamics. Such a positioning system needs to function
with many targets (people) and cover large areas while offering details about
their movement and position. Another important benefit to consider would be
the cost of such a system.

WiFi remote positioning is the positioning technology on which this thesis
focuses. This is because WiFi remote positioning fits all the criteria required by
a crowd-dynamics monitoring system and is currently the best at doing so. The
goal of this section is to present all other positioning technologies and motivate
our choice for WiFi remote positioning.

Today, the term “positioning” refers to an extensive set of processes, across
different fields: it is used in psychology and sociology [26] representing how
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people compare themselves to others; in marketing [27], showing what compa-
nies want people to feel about their brands; in physics where it can represent
placement of elements as small as individual atoms [28]; in medicine, where it
is used to determine the location of cancer cells [29] or at an even smaller level,
at determining the location of chromosomes inside the nucleus of cells [30]; and
many others.

Current technology permits us to measure people’s position at very accurate
levels (millimeters or centimeters) but these solutions are designed to work for
individuals inside well-controlled environments. A few of these systems are
used for: motion capture [31], computer-assisted surgery [32] or entertainment
[33, 34] (Wii and Kinect).

Even when we concentrate on determining the position of humans as they
move around a city, there is still a large variety of well-established technologies
that can be used. Each of them has different advantages and different scopes and
they are not easily interchangeable. The most popular large object-positioning
systems use visual sources, sonic, electromagnetic signals, or come as extensions
of established communication protocols.

2.2.1 Visual systems

Determining the position of people can be done by using visual sources. Visual
positioning systems consist of video cameras that record continuous feeds.
Given the position of a camera, the video stream can be processed in order to
extract the position of each individual that is recorded. Camera systems are
common, especially in residences, where they are used to offer security. With
the same purpose they have been used on city scale, like is the case for London’s
CCTV [35]. More recently, they were used to make measurements of crowds.
The Advisor [36] system, designed for public transport, can offer information
on crowd densities to help prevent overcrowding or even identify potentially
dangerous situations.

Positioning systems based on video streams have an important advantage of
being simple to validate. Errors in data extraction can be corrected by manually
verifying video logs. However, this is a timely and costly procedure.

The main deterrent from choosing visual-based positioning systems is the
cost [37]. The cost is given both by the camera itself and by the support systems
required to stream and process the visual data. These costs are going down
with advances in computer vision [38]. Work that had to be done exclusively
by humans is now taken over by software. But, even with these advancements
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we are still far from achieving the requirements for affordable large-scale visual
positioning system.

Visual systems also bring some important privacy concerns. Being filmed
constantly raises ethical questions because people can easily be identified. This
issue has been addressed in recent research by automatically hiding people
behind silhouettes [39], but it is not yet clear how much of the privacy concerns
this solution manages to address or how performant it is for dealing with large
crowds.

2.2.2 Radar/Sonar systems

Sound navigation and ranging (Sonar) [40], and radio detection and ranging
(Radar) [41] work by recording sound or electromagnetic waves, respectively,
and determining the distance between the radar/sonar device (the anchor) and
the targets. The initial waves can be generated by the target or the environment,
in which case the systems would be passive (an example would be ASDIC [42]),
or they can be generated by the radar/sonar device, in which case the target
would reflect the waves.

Initial radar/sonar systems could determine the position of only one target
but they have been improved in order to support multiple targets [43, 44].
However, the number of targets remains limited and it is not clear if these
systems can reliably determine the position of individuals in large crowds.
Other improvements have increased the positioning accuracy making them
usable for indoor environments, like the Bat Ultrasonic Location System [45],
but outdoor performance and scalability have not yet been achieved.

Similar systems have tried to use this technique for dealing with crowds.
This is the case of Electronic Frog Eye [46], which uses channel state information
from WiFi signals to determine the number of individuals in crowds. Although
not exactly radar, the principle is similar, information from the recorded signal
is used to determine how many people are inside a room. This system mea-
sures only the number of people and not everyone’s trajectory or position and
requires some careful calibration. This makes it unfeasible for measuring crowd
dynamics. Furthermore, these systems require a, possible extensive, processing
phase before the information can be extracted.

2.2.3 Systems with active anchors and target

Systems with active anchors and target offer high positioning accuracy at a high
frequency and scale to large numbers of people. These systems make use of
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electromagnetic signals that are transmitted by one of the entities and received
by the other. Many versions exist:

• Global navigation satellite system (GNSS) [47], with the most popu-
lar implementation being the Global Positioning System (GPS) [2] is the
most commonly used method to identify positions. It works by having a
network of satellites, with known positions, continuously broadcasting
signals. The signals are received and analyzed by a device small enough
to be carried by an individual. By comparing the differences between
multiple signals, the device can calculate its position relative to the satel-
lites and determine its longitude and latitude. The main advantage is that
GNSS systems work from anywhere in the world and the accuracy is in
the order of meters.

• WiFi or Cellular self-positioning [15] is used by the most popular smart-
phone operating systems, iOS and Android. They represent an energy
efficient low-accuracy positioning technique. Most WiFi routers transmit
Beacon frames in order to signal mobile devices that they are in range and
the network is available. By using maps of WiFi router positions such as
WiGLE 1, one can determine a mobile device’s position by determining
which WiFi routers are in range.

• Active badges [48] are proprietary devices that transmit beacons between
them or to and from base stations. These beacons can be used to deter-
mine the location of the person carrying a badge. Because all elements,
transmitters and receivers can be finely tuned, this system can offer high
positioning accuracy. Furthermore, the badges work both indoor and
outdoor. An important aspect of active badges is that they can be worn
in such a way that the direction in which a person is facing can be reliably
determined. The human body obstructs many transmissions, making the
antenna of the badge act like a directional one. Using this feature, studies
have been recently carried out that show the system is able to determine
trajectories of visitors at an exhibition as well as at which exhibit they
were looking [49].

The biggest disadvantage of all these systems is that they require the target
to be directly involved in the positioning process. Although they are perfect
for personal use, this makes them expensive to deploy and even unrealistic for

1WiGLEhttps://wigle.net (Accessed 17-May-2019)

https://wigle.net
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large scales. People are not willing to carry new devices, and even when we
use the ones they already have, the smartphones, they are reluctant to install
new software that could be used to send the data to a centralized location.
Furthermore, technologies such as GPS can consume considerable battery load
and produce heat, making the user even more unwilling to participate in such a
data-gathering process.

2.2.4 Remote positioning based on communication systems

Most of us carry smartphones. These devices have many features, including
support for multiple communication protocols. They support GSM for voice
communication, 4G for data, WiFi for data inside our homes or offices, Blue-
tooth for connecting to external devices and NFC for contact-based operations.
Improvements and new protocols appear all the time: 5G is being released, WiFi
is at 802.11ac, and Bluetooth at 5.1. For all these protocols, the smartphone can
act as both a receiver and a transmitter of electromagnetic signals.

We can build positioning systems based on the signals transmitted by any
of these protocols. This can be done based only on the signals that are already
sent by our devices without adding any new transmission. The basic principle
is simple. The protocols enable communication between a statically placed base
station and the mobile device (be it a smartphone, laptop, tablet or otherwise).
The base stations can act as our anchors, with known positions, while the mobile
device represents the target. We use the signals to determine the position of the
target relative to the anchors.

We know that if one device receives an uncorrupted transmission from
another, the distance between the two devices is at most equal to the maximum
transmission range for the given protocol. This is not exactly true, considering
the transmission range does not have a fixed value and it is affected by many
elements. To name a few, the transmission range can be shortened by obstacles
or the weather and extended because of tunneling effects. Even so, we can
approximate the position of one device to be equal to the position of the other
with an accuracy of a distance close to the transmission range of the given
protocol.

Determining the position can be done both at the target (self-positioning) or
at the base stations (anchor). It is possible to improve the accuracy by receiving
simultaneous signals from multiple anchors, or by receiving the signal from the
target at multiple anchors. This means the target would be in the zone where
the coverage areas of the anchors overlap. We can further improve the accuracy
by making use of the strength of the received signals.
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Self-positioning systems based on communication protocols have a higher
frequency of recording positions compared to remote-positioning systems. This
is because the access points do not have energy limitations and send signals at a
relatively high frequency. However, self-positioning assumes the involvement
of the target, meaning the system cannot scale to many targets.

Remote-positioning systems based on repurposed communication protocols
easily scale to many individuals. However, having a remote-positioning plat-
form assumes that the anchors have centralized control. The costs remain low
because networks of access points can be reconfigured to act as sensors and
deployment of new platforms incur only the cost of access points.

The popularity of smartphones and the wide use of communication protocols
enables the development of positioning technologies that scale to previously
unrealistic number of targets. Each of the communication protocols brings
different properties to the resulting positioning data set. The main commu-
nication protocols that can take advantage of large-scale use in order to offer
crowd-dynamics monitoring are the following:

• Global system for mobile communications (GSM) [50] is the standard
used by almost all mobile phones for voice communication. Every time
a call is made, or an SMS is sent from a phone, a record is kept by the
company that offers the phone service. The records are used for billing
purposes. These records contain the id of the phone, the time, as well as
the id of the cell tower to which the phone was connected. These data sets
are called “call detail records” (CDR).

Using CDRs we can approximate the position of the phone to the position
of the cell tower to which the phone was connected to. This offers a low
positional accuracy because cell towers can transmit and receive signals
for distances in the order of kilometers (as much as 35km). Furthermore,
because records are generated depending only on user interaction the
frequency at which data points are generated is low and varies depending
on both the user and the time.

With rare records of small positioning accuracy, traces based on call-detail
records lack information on all places in which we do not make phone calls
(e.g. shops, coffee places). The advantage is that they can easily achieve
large scales. Service providers can serve millions of users and cover entire
countries. This makes them ideal to study large-scale behaviors such as
measuring seasonal patterns [51].

• 3G/4G [52, 53] are the data transmission technologies used by mobile
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phones for using cellular data. The access points are controlled by service
providers. Similar to GSM, the service providers keep logs when a data
transmission is being made. These logs can be used to extract positional
data. The positioning accuracy is given by the range of the 3G/4G signal,
which, although shorter than GSM, remains in the range of kilometers. Be-
cause usage of 3G/4G incur costs, smartphone applications and operating
systems try to limit the usage. This means the frequency at which data
points are added to the logs, and in turn the frequency of positions, is low.

• 5G [54] is starting to be deployed. It functions at a range of hundreds
of meters, making it comparable to WiFi as opposed to standard cellular
technology. The protocol also makes use of beamforming, a technique of
directing the signals. This could be used to further improve the positional
accuracy. The small range gives it an important advantage when consid-
ering the choice of positioning system. Unfortunately, wide adoption of
the protocol is still far in the future. This means that it will take some time
before it becomes viable to use as a positioning system.

• WiFi [55] works at a range of about 100m. Its hardware is commercially
available, both in the form of mobile devices and access points. Signals are
transmitted in order to serve the requests of the user but also automatically,
in the form of control frames. We will discuss WiFi in more detail as it is
the focus of this thesis.

• Bluetooth [56] has a transmission range in the order of tens of meters, of-
fering higher positioning accuracy compared to the other technologies [57],
but requiring more sensors to be placed to cover an area. The cost of de-
ploying more sensors can be significant and deter the usage of Bluetooth
for such applications.

Bluetooth is not as widely used as compared to WiFi. Although it is
present in most smartphones, it is not enabled by default and requires
peripheral devices (e.g. Bluetooth headphones or speakers) to be useful.
Wearables that connect to smartphones may cause Bluetooth to be more
popular. Not being popular, however, means that they generate less data,
fewer transmissions, and in turn, a lower number of positions compared
to WiFi.

Out of the communication protocols WiFi is the most promising for crowd-
dynamics monitoring. It is widely used, with most of us carrying WiFi-enabled
devices which could potentially be tracked. It offers a reasonable positional
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accuracy for outdoor settings, of around 100m, with positions recorded at a
possibly high frequency rate. The frequency of positions may be high because
positions are recorded both when the target device is used and when it automat-
ically transmits control signals. And all these benefits are given while remaining
unintrusive, which allows platforms to scale to large number of people. WiFi is
also the least expensive technology to use because the required hardware for
anchors is mass produced.

2.3 WiFi remote-positioning system

Our work focuses on WiFi remote-positioning systems as they are currently the
most promising technology for conducting crowd-dynamics monitoring and
analysis because it has the potential for easily providing significant and relevant
positioning data. With large amounts of positioning data, we can extract more
information that can be used to model crowd dynamics.

The advantage of using WiFi remote positioning is that we do not need
to have control over both the targets and the anchors because both already
transmit signals. We need to modify only one of these components and make
use of the signals transmitted by the other. The chosen component is modified
so that it captures and records the electromagnetic signals and calculates the
target’s position based on them. Regardless of our choice, the components of
WiFi systems are widely deployed.

Smartphones are ubiquitous and carried with us at all times. They are,
however, difficult to modify. There are multiple variations in both hardware and
software requiring a lot of work to make any system work for all smartphones.
Furthermore, any modification can be done only with the cooperation of the
owner.

Scaling to many targets can be done only if we have control over the anchors.
Control means we can modify the software/hardware of the anchors. This way,
we can build a WiFi remote positioning framework that has a small deployment
cost (installing sensors) and scales to many targets (as many as fit in the area
covered by the sensors). In some cases, the deployment cost can be lowered
even more by converting existing WiFi access points to sensors. This implies
minimal modifications to the software running on the access points.

A WiFi remote positioning system (where only the anchors need to be
controlled) takes the form from Figure 2.1. It has the following components: the
device carried by the target individual, which during normal operation sends
WiFi frames to find and communicate with WiFi routers; specialized sensors



18 2 Positioning and WiFi remote-positioning systems

(reference points or anchors) that receive signals broadcast by the device in the
form of WiFi frames; a server that gathers the positioning data.

Sensor

Device

WiFi router

Detections

Server

WiFi 

Frame

Figure 2.1: WiFi remote-positioning

To simplify the presentation, we use the term device to represent the target
(individual and WiFi enabled gadget, smartphone, carried by the individual)
and the term sensor to represent reference points.

The sensors are passive, they do not participate in the WiFi frame exchange.
The frames are sent only between the device and the WiFi access point to which
it’s connected, or broadcast when the device is searching for a new network.

When a WiFi frame is received by one of the sensors a detection is gener-
ated. A detection contains: a time stamp, identifying the moment when the
frame was received; the sensor id, a unique identifier given to each sensor, inter-
changeable with the geographical location of the sensor; a device id, uniquely
identifying a device. Regarding the positioning of the device, and in turn the
individuals represented by a detection: Assuming two or more sensors detect
a device simultaneously, these detections can be combined to obtain higher
accuracy positions. This is commonly what is referred to when we use the
term “positioning”. In practice, for our scenario of outdoor detections and
crowded environments, we have discovered simultaneous detections are rare.
When only one sensor records detections of a device, the location of the device
can be approximated to that of the sensor. This is because of the limited WiFi
range, making the detection range of a sensor limited. As each detection reveals
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the position of the device as being near the sensor recording the detection, we
consider throughout our work that detections provide positions and recording
detections is a form of positioning.

WiFi remote-positioning systems can handle multiple targets due to the de-
vice id. The device id can be obtained by taking advantage of the specifications
of the 802.11 protocols.

2.3.1 Using the 802.11 protocols

The 802.11 family of protocol standards defines the physical layer and medium
access layer for wireless data communication. These layers are part of the
TCP/IP stack [58] which is used for most data communication.

On the medium access layer, the standard defines frames as the communica-
tion entity. Frames represent structured data, which is sent to the physical layer,
encoded and transmitted as electromagnetic signals. At the receiver, the signal
is interpreted, and the frames are reconstructed. Whenever we discuss detecting
of a device through WiFi, we mean receiving and recording WiFi frames.

Frames have a general format from which 39 frame types and sub-types
are derived, as well as a few reserved ones. This format is presented in Figure
2.2. It is common that the first three addresses be present and represent the
source address (SA), destination address (DA) and the basic service set identifier
(BSSID - identifies a network) respectively. There are frames that do not contain
all the fields. For instance, Clear To Send (CTS) frames, used to signal that there
are no other transmissions taking place, do not have a source address. Table 2.1
contains a list with all frame types/sub-types that contain a source address.

Protocol 
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Control

Duration

/ID

Address 
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Address 
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Address 
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Power 

Management
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HT 

Control
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Octets: 2 2 6 6 6 2 6 2 4 0-7951 4

Bits: 2 2 4 1 1 1 1 1 1 1 1

Figure 2.2: WiFi, 802.11 General Frame Format

Every device that uses WiFi has an address. When transmitting data this
address is included as the source address in some of the frames. It is reffered
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Table 2.1: 27 frame types/sub-types that contain a source address

Type Sub-type

Data

Data Data+CF-ack Data+CF-poll
Data+CF-ack+CF-poll Null CF-ack
CF-poll CF-ack+CF-poll QoS Data
QoS Data+CF-ack QoS Data+CF-poll QoS Data+CF-ack+CF-poll
QoS Null QoS+CF-ack(no data) QoS+CF-poll(no data)

Management
Association_Request Reassociation_Request Probe_Request
ATIM Disassociation Authentication
Deauthentication Action

Control Block_Ack_Request Block_Ack PS_Poll
RTS

to as a MAC (media access control) address and is set by the device manufac-
turer. IANA 2 provides OUI (Organizationally Unique Identifier) numbers for
hardware manufacturers for this purpose. The first 24-bits of the MAC address
are set to be the OUI and the rest of the bits are set to a value decided by the
manufacturer so that each device can be uniquely identified.

Even though the intention of the standard is to have unique MAC addresses
for each device, this rule cannot be enforced. In most cases the MAC address
can be changed through software. Changing the MAC address requires some
technical skills and because of this, most people do not modify it. This means
that although not guaranteed to be unique, it is common for the rule to be
followed. More so, the standards cannot handle two devices in the same network
having the same MAC address. As such we can implement systems with the
assumption that MAC addresses will be unique.

Because we can assume the MAC address to be unique, and most frames
contain the MAC address of the device set as the source address we can use
the value of the source address as the device id, a unique identifier for the
device. The device id can be used to correlate detections of a device across
multiple sensors. Uniquely identifying a device makes it possible for WiFi
remote-positioning systems to have multiple targets.

No available encryption can stop or interfere with WiFi remote positioning.
When the connection is using security protocols such as WPA2 [59] only the
frame body is encrypted. This means the source address which is part of the
head and not part of the body of the frame, is always available to any listening
equipment.

Some positioning systems can trigger false detections. This is not the case

2http://www.iana.org/ (Accessed 08-Feb-2017)

http://www.iana.org/
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for WiFi remote positioning. An example of a false detection would be a radar
detecting a plane that is not there. This can be caused due to interference or
noise. WiFi uses 2.4Ghz and 5Ghz frequency bands and encodes the data in a
digital form, making its signals distinguishable from the noise found in nature.
There is also a Cyclic Redundant Check (CRC) number in the FCS field of every
frame. The CRC is used to identify transmission errors. If the CRC is missing
or does not match the expected value, the frame is marked as malformed and
can be dropped. All these features of the WiFi protocols guarantee that radio
frequency signals cannot be interpreted to be a WiFi frame.

In order to communicate, WiFi devices need to be connected to a network.
A WiFi network is generally built from several access points, each offering
mobile devices the possibility to connect to. A large network can easily consist
of a few thousand access points and allow for tens of thousands simultaneous
connections. Because WiFi networks are limited in radius and devices are
assumed to be mobile the standard describes two ways for a device to discover
a network:

• An access point advertises its SSID (the name of the network) and network
characteristics (eg. accepted bandwidths) by broadcasting Beacon frames.
Devices listen for Beacon frames and start the connection process if the
network is known or if the user requests it.

• Devices can actively scan for networks by broadcasting Probe_Request
frames. This allows a device to connect to a network that does not transmit
Beacon frames (a hidden network). It also enables faster network discovery
because the device no longer has to wait for Beacon frames. Once the
network is identified the connection process can start as usual.

Because of roaming, Probe_Request frames are normally sent even if a de-
vice is connected to a network or not. Roaming represents a mobile’s device
capability to connect to a different access point of the same network without
causing an interruption in service. When a device is connected to a network, it
may continue to send Probe_Request frames in search for an access point that
can offer better connectivity, based on bandwidth or signal strength.

WiFi works on multiple frequencies. These frequencies are called channels.
There are 14 channels in the 2.4 GHz frequency band, with more in the 5 GHz
one. Communication inside a network, after the connection is established, is
done on a fixed channel. If the sensor listens to a different channel than the
one the network is on, it will not receive any communication frames (eg. Data),
rendering connected devices invisible. It is common for access points to set the
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channel in an automatic manner, allowing them to change it in time, but these
changes are rare. Probe_Requests are the only frames that are sent to multiple
channels, making them ideal for WiFi remote positioning.

The standard does not contain any specification on the channel to be used or
how often to transmit Probe_Request or Beacon frames or how to listen for them.
This is left to the manufacturer and in the case of smartphones these parameters
are affected by multiple conditions such as the battery level or the screen status.
A device that is low on battery tries to conserve it as much as possible and sets
a low frequency at which to send Probe_Request frames. In our experiments,
we found it common for Probe_Request frames to be sent with some regularity,
usually about one per minute. This frequency is higher than the frequency of
recordings for other large-scale positioning methods, such as the ones that make
use of call detail records [1].

It is possible to have a sensor that functions as a WiFi access point. This is
especially useful when an already deployed WiFi network with multiple access
points is configured to have it conduct WiFi remote positioning. This works
without disruptions to the normal functioning of the network. However, to
continue functioning correctly, the sensors can listen on only one channel. The
channel does not have to be the same for all sensors, but it cannot change over
time without explicit intervention.

Commercial WiFi devices have an advertised communication range of 100m,
without obstructions. This is the range at which frames should be correctly
received. Beyond this range the signal strength decreases too much and the
environment noise makes it impossible to reconstruct the frames correctly. The
signals are affected by the environment making the distance and the shape of
the area in which frames can be correctly received vary. Given the limited range
of WiFi, when a sensor detects a device, we can approximate the position of
the device to be that of the sensor. The approximated position would have a
measurement error that could at most be in the range of the communication
distance for WiFi (plus a margin to account for effects such as tunneling that
can extend the distance).

There are many factors that make WiFi remote positioning systems inter-
esting: WiFi is widely available and popular, making it cheap; the protocol
uses unique addresses for each device, permitting us to find the positions of
multiple devices (targets) simultaneously; the signal and frame specifications
make false detections impossible; frames are sent with some regularity, in the
order of minutes; the minimal positioning accuracy is of at most a couple of
hundred meters.
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2.3.2 WiFi remote-positioning system implementation

The basic concept of gathering WiFi frames to model crowd dynamics is simple.
To receive WiFi frames all that is needed is a WiFi device. Many such devices
are available, making the process easily accessible and cheap.

We have conducted multiple experiments using different hardware and
software configurations. To offer a concrete example, we primarily use a plat-
form consisting of sensors (Bluemark 1000 series) and a server to centralize
and store the data. The Bluemark BM1000 sensor has 32 MB RAM, 8 MB flash
and a 384 MHz CPU. The sensor uses a directional WiFi antenna with a gain of
around 12 dBi and has a 4G module for communication with the server. It runs
OpenWRT 3 as its operating system, together with an application we developed
that sets the WiFi interface to monitor mode and records WiFi frames.

Most WiFi remote-positioning deployments use commodity hardware which
does not have directional antennas. Using directional antennas would have
the potential of increasing positioning accuracy by limiting the sensing area.
Throughout our research we purposefully ignore the fact that antennas are direc-
tional in order to not have an unfair advantage compared to other deployments.
We are aware that future technologies, such as 5G, will introduce beam steering
[60] which will enable increased positioning accuracy, however we focus on
existing and widely available technologies.

The sensor registers a detection whenever a frame is received. Not every
received frame can be used to record a detection. For instance, frames without a
source address cannot be used because they cannot be matched to a device. A de-
tection has the source address hashed and saved in SQL text format, compressed
and periodically sent to the server. At the server, the files are decompressed and
set for long-term storage and analysis. The sensors are synchronized using the
Network Time Protocol (NTP) [61] and they reboot daily at 5AM. This last step
is meant to minimize errors.

The application we developed for the sensors uses the libpcap library 4 to
access the WiFi interface and receive WiFi frames as well as an MD5 [62] library
to hash the device identifiers (MAC addresses). Hashing is an important step
because it is possible to link the MAC address to a device [63], while the secure
hashing prevents this. We aim to preserve the privacy of individuals being
monitored to the best extend possible. Access to the data sets is limited to only
authorized people.

As for the sensor itself, it is placed in a simple, small box, along with a power

3https://openwrt.org/ (Accessed 16-Feb-2018)
4http://www.tcpdump.org/ (Accessed 16-Feb-2018)

https://openwrt.org/
http://www.tcpdump.org/
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Figure 2.3: Installed Bluemark 1000 sensor

source, as can be seen in Figure 2.3. The picture represents a sensor installed
and used during one of our experiments. The sensors are generally placed on
streetlight poles.

2.3.3 Notations

We use the following notations for WiFi remote-positioning data sets.
S - the set of sensors (anchors) {s1, ...sN} labeled with sensor identifiers,

interchangeable with the sensor position.
D - the set of devices (targets) {d1, ...dM} labeled with the device identifier.
t - time, measured in seconds.
λ - is a detection, a tuple of sensor id, device id and time 〈s,d, t〉.
λ S - is the sensor that recorded the detection λ .
λ D - is the device identifier recorded for detection λ .
λ T - is the time at which the detection λ was recorded.
Λ - is the set of detections {λ1, ...λR}.
Λ[d] - is the set of detections {λ1, ...λR} belonging to device d.
Λ[s] - is the set of detections {λ1, ...λR} belonging to sensor s.
Λ = (λ1, ...λR) - represents a sequence of detections so that they are ordered

by device, time and sensor.
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Λ[d] = (λ1...λP) - represents a sequence of consecutive detections of device d.
It is a subset of Λ in which ∀i;λ D

i = d. Λ[d] represents the trace of a device d.
Λ[s] = (λ1...λS) - represents a sequence of consecutive detections at sensor s.

It is a subset of Λ in which ∀i;λ S
i = s.

2.3.4 Two sensors experiment - choosing the channel

The WiFi protocol enables the use of one of several channels to transmit data.
If a frame is sent on one channel, the listener must have the same channel set
to be able to correctly receive it (frames on adjacent channels can be received
but it is less likely). Furthermore, a listener cannot receive frames on different
channels simultaneously (an exception can be considered for similar channel
frequencies). Considering this restriction, a WiFi remote-positioning system
needs to consider which channels to have the sensors listen on. There are two
popular options: choose one channel and listen only on that one or change the
channel at a regular interval. Changing the channel is called channel hopping.

We conducted a small-scale experiment to determine if there are differences
between what two WiFi sensors placed next to each other receive. During the
experiment we made a special consideration on channel hopping. We had one
sensor listening on one channel and the other listening on the same channel,
channel hopping and listening on a different channel. We deployed two sensors
in a laboratory room and had them receive frames for about three hours. These
sensors were made by the same manufacturer, had the same antenna, and were
placed about 50 cm apart.

The first sensor is configured to listen on channel 3. The second sensor is
configured to listen on channel 3 for one hour, do channel hopping for the next
hour and for another hour listen on channel 8. Using this partitioning, we have
a period when both sensors listen on the same channel, a period in which one
remains on one channel while the other does channel hopping and a period
when they listen on different channels.

During the experiment we had eight WiFi devices in the laboratory. The list
of devices is presented in Table 2.2. As can be observed, the devices vary by
operating system and type, offering a broad view of possible devices. These
devices moved very little during the experiment and were not removed from
the laboratory room.

We recorded the time at which a frame was received from the eight devices
on each of the two sensors. The results are presented in Figure 2.4. The gray
area is the area in which one sensor was doing channel hopping. The white
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Table 2.2: Two Sensors Experiment - Devices

Name Device Operating System Type
A Nvidia Shield Android Tablet
B Samsung Galaxy S7 Android Smartphone
C Lenovo Y50 Windows 10 Laptop
D Mac macbook pro iOS8 Laptop
E Nexus 7 Android Tablet
F Acer Aspire E15 Windows 10 Laptop
G Nokia 6 Android Smartphone
H Nokia Lumia 625 Windows Phone Smartphone

area on the left represents the period when both sensors listened to the same
channel and the one to the right when the sensors listened on different channels.
The different colors of the dots represent the channel on which a frame was
recorded.

As can be observed there is little difference between the frames captured by
the first sensor (Figure 2.4a) or the second one (Figure 2.4b), regardless of the
period. In Figure 2.4c we show the difference between the two sets of detections,
more specifically the difference between the union and the intersection of the
two sets of detections. The only noticeable differences are for device G, but for
that case the differences appear in all three periods, meaning the source of the
differences is not the choice of channel.

Based on our experiment we can only conclude that there is no significant
difference between doing channel hopping or listening on a single channel. It
is not clear if this is always the case. If a device transmits only data frames
on a certain channel and does not transmit control frames, during this period
the chances to detect the device are smaller if we hop channels and zero if we
listen on a completely different channel. When we consider all frames received
from all devices (devices that are not in the laboratory and can move without
any control), we do notice a significant difference between the received frames,
however the difference is the same regardless of the use of channel hopping.
We selected 50 devices for which we display the difference in Figure 2.5 in
order to offer an idea on this behavior. We go into more detail concerning these
differences in the next chapter. Because for all devices the differences appear in
the three periods, we conclude that the differences can be explained by the fact
that different antennas have different chances of receiving low-quality signals
correctly. This further confirms our analysis of channel hopping.



2.3 WiFi remote-positioning system 27

A
B
C
D
E
F
G
H

0 1 2

D
ev

ic
e

Time (Period - about 1 hour)

(a) Sensor 1 (Channel 3)

A
B
C
D
E
F
G
H

0 1 2

D
ev

ic
e

Time (Period - about 1 hour)

(b) Sensor 2 (Channel 3 - Channel Hopping - Channel 8)

A
B
C
D
E
F
G
H

0 1 2

D
ev

ic
e

Time (Period - about 1 hour)

(c) ∪\∩ of Detections at Sensors 1 and 2

Figure 2.4: Two Sensors Experiment - Channel Hopping. Data captured from two
sensors and the difference between them. (Each channel has a different color.)
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Figure 2.5: ∪\∩ of Detections at Sensors 1 and 2. Sample of devices

2.4 WiFi remote-positioning use cases

WiFi remote-positioning is now a popular technique for gathering data on
people’s location. A lot of research has been conducted that showcases the
technology and its potential and many generic WiFi remote-positioning plat-
forms have been described throughout the literature: Wombat [64], WiFiPi [65],
Probr [66], WaP [67], SenseFlow [68], HABITS [69], Freecount [70].

Estimating crowd density is at the core of many applications that require
positioning data. WiFi remote-positioning experiments that show crowd density
measurements have been conducted given a variety of scenarios and contexts:

• In our own work [71], we showed how WiFi can be used to observe how
the density of people changes throughout the day for a city center during
a music festival.

• Labs, public exhibitions, lecture classes [72].

• Shopping malls [73].

• Motor show exhibition [74], where the authors confirmed the results by
manually annotating visual data and using it as ground truth. The authors
report that crowd density can be estimated with as little as 20% error.

• Lab class, footbridge, station ticket office and subway [75].

• Office space [76], where the authors used measurements of CO2 levels
inside the room to confirm the results.
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Determining the size of a crowd is only one initial step and one of many
applications for crowd-dynamics monitoring for the scale and accuracy offered
by WiFi remote positioning. A large variety of applications has been recently
explored and studied. Here we present just a few examples:

• Safety and security: It has been shown that it is possible to monitor
crowds using WiFi remote positioning and detect anomalous behavior
through the use of outlier detection [77]. The authors developed an al-
gorithm that finds differences from the normal behavior of a crowd and
displays the last location of the individual having the anomalous behavior.

An interesting application that can serve for disaster scenarios is the
placement of WiFi sensors outside the building to determine the number
of people inside [78]. The solution differentiates between devices behind
and in front of the wall based on inter-event time differences added by the
wall obstruction. The system has been proven to work for up to 20 people.

Similarly, search and rescue can be conducted using a drone fitted with a
WiFi sensor [79]. The drone can discover where people are trapped. The
assumption being that individuals would have their WiFi devices with
them yet be unable to utilize them.

• Facility planning: It is possible to use WiFi remote-positioning data to
better understand the behavior of people with regards to the facilities
they use. An example of this is the understanding of how people use the
entrances of a hospital [80] to better improve the flow.

• Tourism analysis: The authors of Beanstalk [81] provided WiFi sensors to
60 locations on Madeira Islands in order to gather data for tourists. They
showed that tourists can be differentiated from locals and that they can
infer tourist behavior and trip itineraries as well as detection of meaningful
events.

• Traffic monitoring: It has been showed that WiFi remote positioning can
be used to monitor vehicular traffic [82]. The authors mentioned that their
measurements managed to detect about one fifth of cars part of the traffic.

• Mass transit management: Unlike traffic monitoring, mass transit man-
agement focuses on understanding the usage of mass transportation sys-
tems (buses, trains). For their project, the authors [83] placed a sensor
inside a bus that counted when people came on and when they left the
bus. They confirmed the results by manually counting people that entered
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and left the bus. Similar measurements were conducted in Aalborg [84].
As well as for the shuttle bus for Thammasat University, Thailand [85].

WiFi remote-positioning has been successfully used for rail transportation
like in the case of the Melbourne experiment [86].

• Social science experiments: The project of [87] showed that encounters
between individuals can be detected and this information can possibly be
extended to determining friendships and automatically building social
graphs. The experiment was conducted inside an open office room. Being
inside the positioning data is more accurate than the one presented in our
work. We show more about this in Chapter 3. The advantage of indoor
measurements is made even more obvious considering it is possible to
extract social relationships and interactions [88] by having just one sensor
placed indoor, assuming enough time is made available to gather enough
data.

Multiple works [89, 90] show it may be possible to extract friendship
information from the data advertised when devices are scanning. They
showcased an experiment where they collected 6 months of data using a
mobile sensor. This requires both a large time frame and access to data
that we consider to be privacy sensitive and are not willing to record or
utilize.

• Classification: There are multiple types of classifications that can be made
based on WiFi remote-positioning data. The authors [91] showed it is
possible to use WiFi to identify people’s role, at least given simulated data.
Their system uses expert knowledge and WiFi remote-positioning data to
label individuals based on their roles (student, worker, cleaner).

Devices can be classified as either laptops or smartphones [92] based on
the pattern of detection.

More interestingly, buildings can be classified [93] by discovering how
often people visit them and with which regularity. The same can be
done for public spaces [94]. The potential here being that this system of
ranking locations can provide more accurate recommendations, immune
to interference in the form of fake reviews that are abundant in crowd-
sourced recommendation systems [95].

• Business analytics: Using real-time density estimates has marketing and
resource-planning applications. It is possible to use density in order to
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understand traffic flows inside shops. For example, this data has been
used to measure the effectiveness of promotions [96].

2.5 Data-gathering experiments

We have conducted multiple data-gathering experiments spanning different
years and locations. For three of the experiments we gather the data using the
WiFi remote-positioning platform described in Section 2.3. The first experiment
used a variation of the same platform. And the final experiment made use of an
existing WiFi network. We modified the access point software so that it records
detections and centralizes them similar to how the platform we describe does,
but we also logged all associations to the WiFi network.

2.5.1 Privacy and ethical considerations

The ethical aspects on the privacy of individuals are an extremely sensitive topic.
This topic has gone through extensive debate in recent years and more and more
people consider it an issue. These issues have more recently taken the form of
laws and regulations, such as General Data Protection Regulation (GDPR). Al-
though this work focuses on analyzing crowd dynamics, which describe human
movements on the scale of large groups, and as such obfuscating information on
the individual, it does make use of positioning data at individual level. Because
of this, we make the following considerations:

To respect the privacy of all individuals for which we record detections, the
data is anonymized by applying a hash function on the MAC addresses along
with a salt. The salt is not known by us, ensuring it is impossible for us to
determine the detections of a specific individual assuming we had access to his
MAC address.

From a WiFi frame it is possible to extract more data, such as: known SSIDs,
supported transmission rates and others. This information has been previously
used to identify a device [97] and it was shown that this data can be used to
extrapolate more information on the device owner such as the country where
she is from [98]. Because of these concerns, we only record the device identifier
along with an identifier for the sensor and the time stamp of the moment
the detection has been made. We make an exception of this rule for some
experiments in which we collect other pertinent data such as sequence numbers.
We specifically mention when this is the case.
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Figure 2.6: Position of Arnhem Sensors 2014 (the is an 100m visual guide)

To further ensure the privacy of the individuals being monitored we make
sure our experiments cover only a small window of time, use different salts for
different experiments, limit the access to the data to a few authorized individuals
and only keep the encrypted version of the MAC addresses. As a separate
project, we are looking into data-driven privacy enhancement techniques. This
separate research is yet to be published.

2.5.2 Arnhem experiment

The first experiment we conducted was in the city of Arnhem, The Netherlands,
in 2014. We deployed multiple sensors in the city during an event called the
“World Living Statues Festival”.5 The event took place on the 28th of September
and puts together participants taking the roles of living statues with visitors
that admire their performance. The participants are given fixed positions on a

5http://www.worldlivingstatues.nl/ (Accessed 16-Feb-2018)

http://www.worldlivingstatues.nl/
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Figure 2.7: Position of Assen Sensors in 2015, 2016 and 2017 (The circle is a 100m visual
guide. The tags represent sensor positions. Black parts of a tag show if the sensor was

used in a specific year, according to the legend.)

path going through the city center. The visitors are advised to follow the path
to observe all performances.

For this experiment we deployed 15 sensors. Because of a software issue
only 5 of them correctly recorded detections. The other 10 had a faulty imple-
mentation which didn’t properly record the device id. Although density of
detections remains correct for all sensors, only data from 5 sensors can be used
to build traces. The locations of the sensors can be observed in Figure 2.6.

2.5.3 Assen experiments

Once a year, the city of Assen, The Netherlands, is one of the hosts for the
motorcycle grand prix 6. The town organizes the TT Festival 7 in the days
before the race. This festival offers a variety of activities: multiple stages for

6http://www.motogp.com/en/event/Netherlands (Accessed 17-Feb-2018)
7https://www.ttfestival.nl/ (Accessed 17-Feb-2018)

http://www.motogp.com/en/event/Netherlands
https://www.ttfestival.nl/
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music with dozens of performers, spread through the city center; a Ferris wheel;
motorcycle stunts; a small amusement park; many restaurants, street-food
vendors; camping area; and the TT Nightride event, where people are invited to
drive their own motorcycle on a path through the city. The festival and races
bring more than a hundred thousand visitors to the city. During the festival
the city center is open only to pedestrians. This and the variety in activities
generates a lot of pedestrian movement.

We conducted three experiments in the city of Assen, in the years 2015, 2016
and 2017. Our sensors were installed throughout the city center, as can be
observed in Figure 2.7. The number of sensors used was different over the years
as were some of the stage placements, but we tried to keep most sensors in the
same positions. The black part of the marker indicates in what year the sensor
location was used. There are four exceptions, of sensors placed further from
the city center, near a camp and the racetrack. The sensors in the city center
covered all the music stages. We recorded positioning data in the days during
and around the festival.

2.5.4 Twente experiments

Our last experiment was conducted in Enschede, The Netherlands, at the Uni-
versity of Twente campus. This is our largest and most complex experiment.
The sensors were the WiFi access points offering access to the Eduroam WiFi
network. This enables us to record both Probe Request frames and connection
status of devices.

2.5.5 Experiments summary

The experiments we conducted vary in the number of sensors used, as well as
the area and activities that took place during the data gathering process. The
statistics on each experiment can be observed in Table 2.3.

Our experiments contained test periods and sensors that were used only for
testing. To clean the data sets we apply the following filters:

Duplicate detection filter - Because frames are sent at frequencies much
higher than one per second and the time stamp of detections have a resolution
at the level of seconds, it is possible to have multiple detections of the same
device at the same time stamp and at the same sensor. We keep only one copy
of such detections.

Interest time filter - It is common for us to test the system with a few sensors
before a big event such as a festival. This data would skew our results, so we
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Table 2.3: Data gathering experiments statistics

Location Arnhem Assen Assen Assen Twente
Year 2014 2015 2016 2017 2018
Event Festival Festival Festival Festival College
Sensors 15 (5 ok) 27 40 30 47
Raw Detections 2,373,494 15,135,611 36,331,241 26,414,742 16,541,927
Device ids 32,570 247,596 2,072,438 176,888 2,395,085
Estimate Devices 1,596 47,907 72,794 55,156 36,536
Frames All PReq PReq PReq PReq (+ Conn)
Duration (days) 1 8 8 12 3
Channel hopping no yes yes yes no
Start date 28-Sep 22-Jun 20-Jun 20-Jun 22-Apr

must keep detections only inside an interest time frame.
Interest sensors filter - Some sensors are used only for testing. We remove

these from the final data sets.
The numbers in the table are representative of the data set, after these three

filters are applied.
The number of device ids recorded varies from one experiment to the other.

In the case of Assen 2016, the number of device identifiers goes over 2.000.000.
This is impossible considering the city center can sustain at most a few hundred
thousand people. The device ids are salted, hashed MAC addresses.

The large number of device ids in our data sets are caused by devices
that change their MAC address, making each such device appear as multiple,
different devices. This is the case when smartphones make use of MAC address
randomization. Although there are techniques to go around this mechanism,
like the ones presented in [97], these techniques represent a violation of privacy
which we are not willing to make.

We found, based on the Assen 2015 data set, for which we record OUI values
for every device, that many device ids having random OUI values (OUIs that
do not appear on the public list8) have only one detection, and most have under
5 detections. This leads us to conclude that if we remove all detections for
device ids that have a small number of detections, we clean the data set of these
random MAC addresses.

To obtain a realistic number of devices we select the devices that have more
than 39 detections. In Chapter 6 we find that if we only keep the devices ids for
which we have more than 39 detections we remove most of the device identifiers
based on random MAC addresses and are left with devices for which the data

8http://standards-oui.ieee.org/oui.txt (Accessed 06-Mar-2018)

http://standards-oui.ieee.org/oui.txt
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is representative. In Table 2.3 we added the estimated number of devices and
this values better match our expectations.

We investigated other possible causes for the large number of device ids
detected in Assen 2016. We checked the distribution of device ids over time,
over the sensors and the rate of change of device ids over time. We found no
anomalies that would indicate a systematic error.

During our experiments we also considered different frames that are cap-
tured and recorded as detections. For the first experiment, in Arnhem, we
considered all frames that had a source address. For the Assen experiments
we considered that Probe Request frames are best suited because they are not
affected by the network usage on the device.

For our last experiment, in Twente, we recorded both Probe Requests and
logged the connection status of devices that use the Eduroam WiFi network at
the university. Connections can be logged in existing networks without requir-
ing specialized software, making it even more accessible to gather positioning
data using this method. For this last experiment we were more aggressive
regarding privacy and used different hash salts for every day of the experiment.
This means that the number of estimated devices cannot be directly compared
to the values from the other experiments because a device that is detected in
multiple days is recorded with multiple device ids.

2.6 First glimpse of WiFi remote-positioning lack-
ings

Our experiments have produced large amounts of data. We have gathered
tens of millions of detections for hundreds of thousands of devices. They have
been conducted in different years, under different circumstances, yet main
characteristics remain similar. We do not add Arhnem to this comparison as
the data from Arnhem come from only 5 sensors. As such, it is not sufficient or
representative of what we consider normal WiFi remote-positioning data.

The detections that we have are not equally split between the devices. While
some devices have thousands of detections or more, most of them have very
few. Even after removing all devices for which we have less than 39 detections
from our data set, more than 60% of devices have less than 200 detections. And
this is true regardless of which data set we investigate. Figure 2.8 represents a
histogram for the number of detections per device, for each of our four main
data sets. The histogram shows percentages, as such, the results are normalized
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by dividing the value for each interval of the number of detections per device,
to the total number of detections for the data set. We apply the same technique
to the other histograms in this subsection.
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Figure 2.8: Histogram of number of detections per device

The histogram shows that most devices have few detections, but we also
have devices that we detect hundreds of thousands of times. Unfortunately,
devices with many detections tend to be static and do not offer any movement
data. Static devices are continuously detected because they are plugged in and
do not have a need to conserve energy. In these circumstances, devices can
continuously scan for better connections and they broadcast probe requests
constantly.

Static devices cannot be used for crowd-dynamics analysis because they do
not add any information about movement or flows. However, we cannot simply
remove all devices that have more detections than a given threshold. Consider
a laptop that is plugged in at the office and at home. The laptop is mobile, and
it may contribute information to crowd flows.

The frequency at which we detect devices varies from device to device and
over time. It is possible to have two devices with hundreds of detections, one
to be detected for a few minutes, and the other to be detected throughout the
day. In order to have a realistic representation of how much time we detect a
device we have grouped detections in slots of five minutes. We then add up the
five-minute intervals to determine for how long we detect devices. We chose
the interval size to be five minutes because it is small, yet large enough for a
person to move out of the detection area of a sensor. Figure 2.9 is a histogram
showing the distribution of devices based on the total duration for which each
device is detected. Devices with fewer than 39 detections were removed prior
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Figure 2.9: Histogram of total detection time per device

to building the histogram.
The distribution of devices based on the total detection time is similar to the

distribution of devices based on the number of detections. Most devices are
detected for few hours in total. The total detection time is different from the time
difference between the last and first detection of a device. A device could be
detected in the morning and in the evening but if it has few detections, the total
detection time would be small. The total detection time is more representative
because we have no information about what happens to a person or a device
when it is not detected. It could be outside the detection area, or the device can
be offline, or we do not detect it because of interference.
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Figure 2.10: Histogram of number of sensors per device

Considering the large number of devices with few detections, we do observe
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a lot of mobility. Figure 2.10 is a histogram showing the distribution of devices
based on the number of sensors that detects the same device. There is a signifi-
cant portion of devices detected by few sensors, meaning they are static. But
most devices are detected by multiple sensors, with a calculated mean of 14, 14,
15 and 12 sensors detecting the same device.

(a) Assen 2015 (b) Assen 2016

(c) Assen 2017 (d) Twente 2018

Figure 2.11: Sample traces - each represents 1 hour of data (100m visual guide circle)
Raw data is difficult to interpret

Having detected a device at different sensors is not enough to describe
movements. If the sensors are close to each other, it is impossible to differentiate
between a movement and a device being detected at different times by two
sensors that are in range of it. When we use the raw detections to trace the
movements of a device it is common for the device to appear to be moving in
circles.
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We extracted one example from each of our four main data sets to exemplify
this circular behavior. The traces for these four devices are shown in Figure
2.11. For each device we have traced its movements for an interval of one hour.
The white marks represent the placement of our sensors while the black arrows
represent a movement. If a device is detected simultaneously at two or more
sensors, we draw the arrowhead to be at the center point between the sensors
that detected it.

In each of our examples from Figure 2.11 we can observe that the traces
show the devices moving almost chaotically. They seem to always be moving
back and forth. For Assen 2016 we managed to gather comparison data using
a GPS. The green line represents the movement of the device as it is recorded
by GPS. We can easily observe that the general path of movement is correct,
however the trace is much more erratic compared to the real path. The same is
likely true for the other three examples.

Although we handpicked the examples in Figure 2.11 to show the circular-
movement anomaly, these examples are not exceptions. When movements are
traced based on the WiFi remote-positioning data, most of the time, they show
this erratic behavior.

Erratic movements, combined with big gaps between few detections, in-
dicate that the output of WiFi crowd-dynamics-monitoring platforms may be
lacking and it may be more difficult than previously expected to process this
data, in order to harness its information. It is our goal to explore what causes
these issues and what is the potential of this type of data.

2.7 Summary

From a multitude of positioning technologies, we have determined WiFi re-
mote positioning to be the one that best techniques matching the requirements
of a crowd-dynamics monitoring application. WiFi remote positioning has
an accuracy of around 100m and can be used to monitor many individuals
simultaneously.

We have built our own implementation of a crowd-dynamics monitoring
platform using WiFi remote-positioning and in the process, we have discovered
implementation details that have not been reported in the existing literature.
The most notable details are the choice of frequency (channel) on which to listen
for WiFi frames and the variants of these frames. The type of WiFi frames is
particularly important because only some contain the necessary data that lets
us identify a device. Furthermore, some frame types, such as Probe Request
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frames, have use cases that require regular transmission patterns making them
ideal for gathering the multiple positions required to build a trace.

We made use of our crowd-dynamics monitoring platform to conduct five
data-gathering experiments. These experiments have provided us with data sets
consisting of multiple days of positioning data for crowds of tens of thousands
of individuals. These data sets represent different towns, different time periods
and different contexts. The rest of our work focuses on analyzing these data
sets in order to discover to what extent they can be used to model the dynamics
of the crowds that they represent.

Although research literature contains multiple examples of using WiFi re-
mote positioning with promising results for specific applications, analysis of
the raw positioning data gathered during our experiments raises some red flags.
We have not gathered the same amount of data for all devices, meaning for
some we can only detect their presence once while most have few detections,
and few have many. Traces drawn using the raw data have large time gaps and
exhibit significant anomalies in the form of erratic movements. These issues
warn us about possible shortcomings when using WiFi remote positioning for
crowd-dynamics analysis.



42 2 Positioning and WiFi remote-positioning systems



CHAPTER 3

Understanding difficulties in WiFi-based
crowd sensing

By tracing the positioning data we obtain from WiFi remote-positioning systems
we can easily notice problems. For some devices, we have few recordings, for
others we observe large gaps. When we do have sufficient positions, we observe
an abundance of anomalies we call circular movement.

We aim to explore the properties of WiFi remote-positioning systems and
determine what are the factors that cause the sparse detections and the anoma-
lies. To do this we analyze the data sets we gathered during our experiments.
Considering there is no way to control the target devices and add more data we
cannot directly address the sparsity issue, instead we focus on smoothing the
traces in order to remove the anomalies.

3.1 Contributions

Because of significant problems like moving in circles, large gaps and gen-
erally few detections, visualizations of traces captured through WiFi remote-
positioning become fuddled. In this chapter we explore the underlying causes
for these anomalies.

In order to truly understand the problems identified through trace visu-
alizations we go into the details of the WiFi remote-positioning systems. We
categorize the properties of WiFi remote-positioning systems and show their
effects, as well as discuss the issues we observed.

Improving the frequency of detections cannot be done in a non-intrusive
way. Instead, we concentrate on improving periods for which there are enough
detections. Most importantly we address the circular-movement anomalies. To
achieve this, we developed three smoothing algorithms based on RSSI, time
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compression and cycle removal, respectively.
In order to understand the effect and the differences between the three

smoothing algorithms, we need to have a way to compare them. We define
two metrics to serve as means to compare the three algorithms: entropy and
dissimilarity. Finally, we showcase the effects of the three algorithms on the
trace visualizations.

3.2 Properties of WiFi remote-positioning data sets

A perfect crowd-dynamics model would have strict requirements. It would
have to represent the entire population, in order to have no bias. Furthermore,
it would require representative movement information. To obtain accurate,
representative movement information we require positioning data which has
an accuracy significantly higher than the distance of the shortest movement
that needs to be represented. Furthermore, the frequency needs to be higher
than the duration of the shortest move that needs to be represented. Ideally,
this data would be continuous, and not contain gaps in which the position of
the person is not known. The shortest movement that needs to be represented
is dictated by the application. For example, extracting information on holiday
preferences should not require a frequency higher than one detection per day
with a positional accuracy on the scale of cities.

Positioning solutions are far from perfect. In the case of WiFi remote posi-
tioning we know that positions cannot be recorded for the entire population,
as some people simply do not have WiFi-enabled devices. We have no way
of knowing how many individuals can be monitored and if the behavior of
individuals that can be monitored differs from those that cannot. Furthermore,
the positioning accuracy is smaller than 100m (we discuss later in this chapter
why this is the case) and we observed in Chapter 2 that detections are sparse
and have a frequency that varies significantly (from seconds to tens of minutes).
The frequency can also vary from device to device.

We remind the reader that the choice for WiFi remote positioning is based on
the fact that WiFi is already widely deployed, in principle making it possible to
build a remote-positioning system that scales to hundreds of thousands, or even
millions of people. To achieve this, we assume no control over the hardware
or software carried by target individuals. Without control of the hardware
or software we cannot implement any technique that depends on the targets
cooperation in order to increase positional accuracy, frequency or offer any
guarantees on the quality of the resulting data sets.
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There are three main factors to consider when analyzing WiFi remote-
positioning systems and data. These factors are given by the elements of a
detection 〈s,d, t〉, the sensor s, the device d and the time t. These translate in
positioning accuracy, device identifier issues, and frequency of detections. We
go into details on each of the three, discuss limitations and possible ways of
improving them.

3.2.1 Positional accuracy

We know that the signal from a device can be correctly recorded only if the
device is in proximity of a sensor. The proximity distance is dictated by the
transmission power and antennas. Most commercial WiFi devices have an
advertised transmission range of 100m, given line of sight, meaning no obstacles.
It is usually assumed that beyond this range the signal diminishes to a point
where frames are received corrupted or are simply indistinguishable from
background noise.

The transmission medium used by WiFi is far from ideal. The environment
has a significant effect on the signal. Tunnels are known to extend the range
while buildings and people limit it. Considering this, the shape and size of the
area in which WiFi frames can be correctly received is irregular and varies in
time.

In one of our data sets we have identified 1,491 occurrences in which a
device is detected by five or more sensors at the same time. If we were to take
the 100m advertised detection distance as an absolute boundary, this would be
impossible as there is no location where more than three 100m discs around the
sensors can overlap.

What this means for our crowd-dynamics monitoring data sets is that be-
cause of the irregularities of the detection area, instead of having a clear separa-
tion of when a device is detected or not based on distance, we have an increase
in likelihood of a device being detected when it is closer to the sensor. This
likelihood is dependent not only on distance but on the angle and changes in
the environment. We know of no way to determine this probability, given the
large number of parameters that affect it.

Many assume that WiFi remote-positioning data has a fixed positional ac-
curacy that can be further improved. This has been repeatedly shown to be
true for indoor environments [99]. For outdoor environments, this could not
be further from the truth. The main factor why indoor environments can offer
high accuracy is because indoor spaces are usually significantly smaller than the
100m advertised WiFi range. The small distance puts targets in an area where
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frames are likely to be correctly received. Furthermore, walls reflect the signal,
increasing the chances it is received by a sensor.

Throughout the literature for WiFi remote-positioning for indoor spaces,
positional accuracy is increased through the use of trilateration [100, 101]. Tri-
lateration is a well-known technique of combining multiple simultaneously
recorded distance measurements in order to obtain positions with increased
accuracy. WiFi communication has no way of directly measuring the distance to
a device transmitting a signal. However, the measure of received signal strength
indicator (RSSI) has previously been correlated to distance [102].

The received signal strength indicator (RSSI) is a value measured by the
receiver. It represents the power of the signal when it is recorded. RSSI can
be used as an estimate of the distance between the sender and receiver, and
by using trilateration [103] or fingerprinting [104], positioning accuracy can
be increased from more than 100m to just a few meters. The RSSI-distance
correlation is given by the fact that the signal power decreases the longer it
travels.

According to the authors of [102], RSSI is closely correlated to distance,
assuming the distances are small, under 10m. As such, solutions for improving
positional accuracy based on RSSI work for indoor scenarios, where the distance
between the sensor and target device is in the order of meters and where walls
reflect the signal, lowering the probability of detection when the sensor is in a
different room from the device.

Considering outdoor environments, and large distances (tens of meters),
the correlation between RSSI and distance no longer holds. Even worse, at a
large distance the low signal strength causes frames to be lost. This means that
the simultaneous detections required for trilateration are rare. This is what we
observed in our data sets, where less than 10% of detections were simultaneous.

Outdoor, the signal strength is lowered by more obstacles, such as other
humans, trees, cars or buildings. Furthermore, there are many types of smart-
phones and wireless devices in use today and the power with which a signal is
sent differs from device to device. It differs because of the design of the network
module or even because of the manufacturing process (impurities in the metal
from the antennas). All of these factors add differences to the RSSI values that
cannot be controlled.

We found that the frames received from a fixed device can be recorded with
very different RSSI values. This variance is well known, and solutions have been
proposed. However, these solutions, as in the case of [105], assume many frames
are received and an average RSSI value can be calculated. This is possible when
the target device is the one controlled instead of the anchors because WiFi access
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points transmit Beacon frames with a fixed and high frequency. By comparison
mobile devices transmit ProbeRequests with a lower frequency, affected by the
current battery level.

Considering the outdoor scenario, it is impossible to use previous solutions
to correlate RSSI values to distance. Consider our Assen 2015 experiment,
where we recorded RSSI values, to use as an estimator for distance. First,
most RSSI values were very small (-100 to -70), this is because the sensors are
installed on posts and are generally far from the mobile devices. Other works
that assume a correlation between RSSI and distance use higher RSSI values
[102, 106]. Without any available literature, and without ground truth we could
not correlate RSSI values to distance. Manual verifications of the traces revealed
many cases where high RSSI values were recorded for detections where we
believed the device was far (based on surrounding detections at other sensors).
Furthermore, distance estimates are particularly useful when simultaneous
detections are recorded and we discovered this to rarely be the case, even
though the sensors were positioned so that the detection areas have extensive
overlap. Because of negative results we stopped recording RSSI values. We did
this for the goal of preserving privacy by recording as little data as possible.

We reiterate that we assume we cannot modify the target device. If we could
modify the target device, we could improve positional accuracy by controlling
the transmission power in order to set the detection range or ensure that every
signal is detected by multiple sensors so that we can perform trilateration.

Given the limitations introduced by the outdoor environment, the large
distances, the high packet loss, as well as the fact that in most cases we cannot
improve the accuracy due to the lack of simultaneous detections, we conclude
that WiFi remote-positioning accuracy for the scenarios we consider is limited
to that provided by single sensor detections and has a value of around 100m.

3.2.2 Target identifier

It was expected that MAC addresses uniquely identify a device. Unfortunately,
this turns out not to be always true. Even if the MAC address is set to be
unique when the network module is manufactured, it is common for software
to support the modification of MAC address. In practice two devices can have
the same MAC address, or one device can have multiple.

Due to privacy concerns some operating systems started randomly changing
the MAC address while scanning for networks. The process of repeatedly chang-
ing the MAC address to a random one is called MAC address randomization. It
is meant as a privacy measure. By obscuring the MAC address it is assumed that
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the device cannot be tracked. This technique is used by modern Apple devices 1

as well as Android based ones. However, MAC address randomization can be
defeated as showed in [97], where other information, such as sequence num-
bers, present in the frames is used as unique identifiers for devices. Another
technique presented in that paper is the creation of false WiFi access points that
force the device to reveal the real MAC address.

In our experiments we make no attempt to find the MAC address of devices
that use MAC address randomization and we do not attempt to match multiple
such addresses to a single device. We do this to respect the privacy assumed by
the owners.

We observed random MAC addresses in all our data sets and the same
have been reported by previous WiFi remote positioning experiments [82]. In
our data sets we observed the percentage of detections having random MAC
addresses grow from year to year, starting at 10% and reaching 35%.

We developed a method to estimate if a device identifier is based on a
random MAC address which uses the number of detections per device. The
details of the method are presented in Chapter 6. Random MAC addresses are
changed frequently and there are many available. Because of this we record a
random MAC address only few times.

It is possible that a final WiFi remote-positioning data set contains detections
of different devices recorded with the same identifier or having one device
be recorded with different identifiers. This can also be true for our data sets.
However, we expect this problem to be small especially after we remove the
detections for device identifiers that we estimated to be based on random MAC
addresses.

3.2.3 Frequency of detections

We found that detections in our data sets are sparse, large gaps are common
and their frequency varies considerably. It is common to find detections with a
high frequency (every few seconds), for a short duration, surrounded by large
gaps or combined with frequencies in the order of minutes.

The main issue is that target devices set their own transmission frequen-
cies. The rate at which frames are sent is based on the battery level, running
applications or even the screen status. Furthermore, the device or the WiFi
module can be turned off by the owner. Without a fixed frequency or control
over the interest device (in order to set a fixed frequency), we have no way of

1User Privacy on iOS and OS X - in Session 715 of Core OS WWDC14
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determining if we are not receiving frames because the device is not sending
them, the device is not present in the sensing area or because of interference.

During our two-sensor experiment from Chapter 2 we discovered what is
likely to be the issue for low detection frequency. The experiment consisted
of recording detections with two sensors placed inside a lab room and located
only 50cm apart. The room was inside a building with moderate foot traffic in
which WiFi seemed to work perfectly (no one had connection issues and there
were no issues with bandwidth) and found that many frames are lost due to
interference. We observed that about 40% of frames have the retransmission bit
set to 1, meaning the receiving device did not confirm the original frame was
received and the frame was sent again. This shows that a lot of frames are lost
due to interference.

The Assen data sets are built by recording only Probe Request frames. These
are management frames which are not retransmitted, making this problem
worse. Furthermore, the conditions during our data gathering experiments,
large crowds, big distances from sensors, make interference much more likely.
The human body diminishes WiFi signals and multiple WiFi devices in the
same place increase the chance of simultaneous transmission. When two or
more frames are broadcast simultaneously on the same channel they cannot be
received. This is called a collision. Frames cannot be received even if only part
of them overlaps.

Even worse, by analyzing the data gathered during our two-sensor experi-
ment we further confirm that frame loss is the norm, rather than the exception.
We previously analyzed data only from devices for which we had direct control.
For the devices inside the room detections were recorded at the same time by
both sensors. However, when we consider all devices, devices which are not in
the same room as the sensors and because of this have a low signal quality, the
results are very different. This can be observed in Figure 3.1. Here, the x-axis
represents time, while the y-axis represents the device, each dot represents a
detection of the device at the given time. The color of the dot represents the
channel on which the detection was recorded. As can be seen in Figure 3.1c,
the two sensors gather a significant number of detections for which there is no
equivalent captured by the other sensor.

In the figure we present only detections for devices that were seen at least
once by both sensors. Other than these, there are a significant number of MAC
addresses recorded by only one of the sensors and not the other. Sensor 1
recorded 13479 distinct MAC addresses and Sensor 2 recorded 8244 distinct
MAC addresses. Out of these only the 1240 presented in the figure have at least
one detection at each sensor.
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(a) Sensor 1 (Channel 3)

(b) Sensor 2 (Channel 3 - Channel Hopping - Channel 8)

(c) ∪\∩ of Detections at Sensors 1 and 2

Figure 3.1: Detections from common devices (Each channel has a different color)
Two sensors experiment
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The MAC addresses between 700 and 1100 all start with the same sequence
“da:a1:19”. We have identified this to be Company ID (CID), belonging to Google.
CID values are similar to OUI values, but they cannot be used to create unique
MAC addresses. This means that the value we identified is most likely used by
the Android operating system for MAC address randomization. This means
that the 400 addresses represent only a handful of devices. The horizontal
continuous lines belong to Cisco WiFi hotspots that are offering internet access
to the building and the “00:00:00:00:00:00” MAC address, which is probably
used by multiple devices.

To better understand the effect of distance on the chance of receiving the
frame and recording a detection, we compare subsets of detections from the two
sensors. The comparison is shown in Figure 3.2. With green we represent the
percentage of detections that have an equivalent in the other data set, and with
orange, those that do not. The upper part of the graph represents the detections
for Sensor 2 and the lower part, those for Sensor 1. We can extract subgroups
from the detections. One group is the set of common devices (devices detected
at least once by each sensor), and a smaller subgroup represents the nine devices
we had in the lab during the experiment. These would be the ones that have
a short distance and are mostly detected the same by both sensors. We use
the labels “All”, “Common” and “Our” to represent all detections and the two
subgroups. Because most of our experiments and many other record only Probe
Request frames we extracted this set of detections separately in order to see how
it compares to the set of all detections. The same subgroups were extracted.

It can be observed that for the devices in the laboratory, both sensors gather
almost the same set of detections. However, when we look at detections from all
devices, Sensor 1 has 40% of detections matching a detection recorded at Sensor
2 and Sensor 2 has 80% of detections matching one recorded at Sensor 1. This
means that the sensors, which were placed only 50cm away from each other,
have very different views. When considering only Probe Request frames, the
detections from the two devices are more similar. This is because Probe Request
frames are sent in bursts, increasing the chance that at least one is received.

The result of this experiment supports the fact that few WiFi frames are re-
ceived. This means that frame loss explains, at least partially, the low detection
frequency.

The high loss rate for WiFi is confirmed by other research [107] that tries to
find better estimates for the packet loss rate given different physical layer con-
figurations. Similarly, in their work [108], the authors state that over half of the
transmission time for WiFi is used to correct errors. Even so, the authors argue
that frame error rates vary. The authors discovered that frames transmitted at
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Figure 3.2: Differences between the sensors (green - matching; orange - not matching)

low data rates are more likely to be lost. Considering management frames (such
as Probe Requests) are sent at low data rates, so that old devices can still detect
them, this raises serious concerns for many WiFi remote-positioning systems.

The authors of [109] show that the high scan rate used by phones becomes
a problem when large crowds are formed. The low data rate for transmitting
management frames and the large number of devices transmitting in the same
area causes throughput issues. These cause collisions and an increase in the
number of lost frames. The same results are supported by [110].

Other than high frame loss, there are cases when detections are not recorded.
These cases are far less frequent and less problematic. One example would be
faulty sensors. In ideal circumstances sensors would never break and would
continuously record data. Sensors can fail, permanently or temporary. In
our experiments, such a gap is present because the sensors are configured to
perform an automatic reboot every 24 hour. Other off-line times are also present,
although rare.

Although not affecting frequency, timing errors can create the circular-
movement anomalies. These errors are very rare. When a detection is recorded
the sensor records the time stamp for it. The time stamp is based on the internal
clock of the sensor. For the data set to be correct, the internal clocks of sensors
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need to be synchronized, otherwise it would be impossible to determine a global
ordering of detections. As previously mentioned, we make use of the Network
Time Protocol to synchronize the clocks. Even with synchronized clocks it is
possible, although very unlikely, to have irregularities. Two different sensors
that receive a frame near the transition between two seconds may record it with
different time stamps. When tracing the path this could make the device seem
to be moving in the wrong direction.

3.2.4 Explaining the anomalies

Consider a static device, its detections are presented in Figure 3.3b. If we trace
the detections of this device we can draw the path from Figure 3.3a. As a visual
guide, the path starts with dark green and changes to dark red towards the
end. This example illustrates what we found to be common in our data sets.
Tracing based on the WiFi remote-positioning data reveals circular-movement
anomalies, even for devices that are static.

A
C

B

D

(a) Path (circle is 100m visual guide)

A
B
C
D

 0  1  2  3  4  5  6  7  8

S
en

so
r

Time (s) *100

(b) Detections Over time

Figure 3.3: Irregular movements of a static device (artificial trace based on real ones)

We believe our example device is placed between sensors A, B and C. In ideal
circumstances every frame sent by the device would be detected by all three
sensors. This is rarely the case. The device is detected by only one sensor at a
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time, at most two, and the order of detections seems to be random. Furthermore,
occasionally, the device is detected by a fourth sensor that is placed further
away. A first look at the trace gives the impression that the device is constantly
moving randomly, between the three sensors, and sometimes to the fourth.

We identified multiple such examples in our data set, where a device that
is static appears to be moving similar to what we present in Figure 3.3. We
confirmed that these devices are static because the OUIs match those of WiFi
routers or printers and considering that these devices are constantly detected
by the same two or three sensors for large periods of time (most of the day).

Most traces we extract from our crowd-dynamics monitoring data sets have
these problematic characteristics. The problems get even worse for mobile
devices. Instead of a clear path between the start and the destination, we see the
device moving back and forward having only a general trend of approaching
the destination. This movement seems erratic.

The main reasons for this observed behavior are a high number of lost frames
and the low positional accuracy given by dynamic, irregular detection range. The
positioning accuracy is irregular because the signal range is extended by streets
and limited by buildings and even people. The frequency is primarily affected
by the high number of lost frames, due to interference and low signal quality.
Low signal quality is caused by the large distance between the target device
and the sensor as well as buildings and people blocking the line of sight path.
Interference is caused by the large number of people, and with them, devices
that transmit at the same time using low bandwidth (and as such occupying
much of the transmission time).

This characteristic is not particular to our data sets. Similar works [80]
exhibit the same characteristic in their visualization. This is also the case for
GPS positioning [111], although the problem is not as severe.

In the case of GPS data sets the circular-movement issue has been addressed
through smoothing [112]. The example trace presented by the authors displays
a back and forth movement similar to the one we encounter. The smoothing is
done by applying outlier removal (where unlikely positions are removed), inter-
polations (by adding new detections). Similarly, the authors of [113] smoothen
the traced GPS path using outlier removal.

Outlier removal cannot be used to smoothen traces obtained through WiFi
remote positioning. Outlier removal works for GPS because one position can be
erroneously recorded to be far from the others in the trace. For WiFi, the set of
possible positions is small and erroneously recorded positions are around the
area where a device is located.
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3.3 Smoothing traces

Information retrieval from mobility data sets that have small positional accu-
racy and low detection frequency, is not trivial. Even simple tasks such as
differentiating between mobile and static devices requires expert intervention.

Visualizations of individual movements are unclear. By tracing the detec-
tions of one device we see it randomly moving back and forth between sensors.
Only careful analysis, through tedious visual-temporal inspection, reveals a
general path.

Most properties described in the previous section can be tackled by having
control over both the target device and anchors. We want to preserve the
assumption that there can be no control over the target device. Yet, to be able
to extract useful information we need to address scenarios such as the one
presented in Section 3.2.4. We do this by modifying the raw traces to smoothen
the paths and remove irregular back and forth movements.

Smoothing the traced paths improves the visualization system and enables
complex information retrieval. Take one simple question “How many times
did people move from sensor A to B?”. If many traces contain back and forth
movement between these two sensors, the answer to the question would be
skewed. One movement appears as multiple.

We define three methods that identify a subset of detections, which when
removed or modified, simplify, or in other words, smoothen a trace. The goal is
to obtain smooth traced paths that retain the general shape of the original ones.

3.3.1 Detections with low RSSI values

When the transmitting device is far from the sensor, or the environment is very
noisy, frames are received with a small power level. This is measured by the
RSSI value.

The intuition is that detections with small RSSI values are of low quality and
that the trace would be improved by removing or modifying these detections.

There is no known threshold under which we can say a detection is of low
quality and should be removed/modified. We note this threshold with R and in
order to find the appropriate one we test multiple values for it.

Removing detections based on RSSI has been done before [114]. However,
the authors offer no discussion on how the threshold is chosen. We believe there
is no one-size-fits-all solution because the RSSI values are affected by multiple
factors including transient ones, like weather.
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3.3.2 Frequent detections

The speed of pedestrians does not vary much from one person to the other. We
can make use of this range in selecting useful data. By manually analyzing
traces from our data sets we concluded that people change their position rarely
and as pedestrians, slowly. We can say that the frequency of significant location
change is lower than the detection frequency. Because of this we assume that
there exists a size for a time interval so that each time interval has one detection
that gives the position of the device for the entire interval.

To determine these dominant detections, we split the time into intervals of
∆T seconds and select one dominant sensor for each interval. All detections
belonging to other sensors are removed or modified to contain the dominant
sensor. We say a sensor is dominant if it has the highest strength according to
equation 3.1. The strength represents the sum of RSSI values in all detections
inside the interval belonging to the sensor-device pair. We choose the sum of
RSSI values because we expect a close to linear correlation between the RSSI
value and the frame loss rate. This means that many detections with low RSSI
values are stronger, more representative, than one detection with a high RSSI
value.

Strength(S,d,∆T ) = ∑
〈S,d,t〉,t∈∆T

|RSSI| (3.1)

Here, RSSI represents the signal strength of detection 〈S,d, t〉.
A similar mechanism to simplify traces is used by the authors of [80]. In

their work, the authors sample the trace by keeping one detection every ∆T
seconds. They do not use any mechanism to ensure that the chosen detections
are representative. Similar to the RSSI case, the authors do not offer a discussion
on how to choose the value for ∆T .

Although these techniques are also found in other works from the literature,
as to our knowledge, we are the first to present a comparison between the usage
of multiple values for ∆T or R.

3.3.3 Cycles in the path

As previously stated, it is common for traces to display back and forth move-
ments in a sort of circular behavior, caused by lost frames, low transmission
frequency and irregularities of the transmission range. We propose a direct way
to combat back and forth movements. We identify a back and forth movement
in a trace as a set of consecutive detections that has the first and last detection at
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the same sensor and no more than X detections at other sensors before the first
sensor is detected again.

We must set X so that we remove the back and forth cycles yet maintain as
much information from the original trace. For instance, a value of X that is too
large would identify natural cycles in movements, such as going to a shop and
back, as irregular ones. In contrast, a small value of X would identify no cycles.
We test our solution with multiple values for X .

For each cycle we mark for removal or modification all detections recorded
at sensors that are not dominant. The dominant sensor is identified using
equation 3.1.

It is possible for a detection to appear in multiple cycles. In this case the cycle
with the earliest start time is chosen. By choosing the cycle with the earliest start
time we give an advantage to the cycle with the longest history. Algorithm 1
shows the steps required to identify the back and forth circular movements
using this method.

Result: marked detections
detections;
for each device do

identify cycles
for each cycle do

find sensor with highest Strength
end
for each detection do

get earliest cycle containing detection
if sensor != cycle dominant sensor then

mark detection
end

end
end

Algorithm 1: Cycle identification

3.4 Comparing trace-smoothing techniques

Measuring the correctness of a trace is done by comparing it to the movement
of the individual that generated it. The movement can be recorded using more
accurate systems, such as GPS or by keeping logs. We consider the recorded,
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accurate movement, to be the ground truth. Collecting ground truth on the
scale of our experiments is not feasible. Because of this we need to find other
techniques to verify our results.

One way to compare the efficiency of the rules is to trace the paths taken by
individuals, before and after we modify them, and conduct visual comparisons.
However, although simple, this method can be subjective, and it requires manu-
ally going through many traces. Furthermore, traces can be long and complex,
requiring the analysis of animations instead of images. We conduct this type of
verification on a small sample of traces to confirm our results.

As an alternative to visually verifying a modified trace we propose two
metrics. These metrics can be applied on the entire data set and they offer
different insights on the results. One is entropy and measures how much our
techniques smoothens the trace. The other, we call dissimilarity and it measures
how different the modified trace is from the original. We use these metrics
because the goal of our techniques is to remove irregularities while preserving
the general path.

To calculate the entropy we take all pairs of two consecutive detections of
a device and we calculate the probability that the second detection occurs at
a specific sensor, given the sensor at the first detection. We model it as the
Shannon entropy [115], defined in equation 3.2.

H(S) =−∑
S∗

p(S∗|S) log p(S∗|S) (3.2)

Here, p represents the probability that a device triggers a detection at sensor
S∗ as the next one after a detection at sensor S. The entropy is calculated for
each sensor S and averaged.

Dissimilarity measures the difference between the smoothened trace and
the original. Given two traces, with the same number of points and with
matching time stamps, we define dissimilarity to be the average Euclidean
distance between the positions of sensors at matching detection times in the two
traces. To offer a concrete example, if we had two traces, with a single detection
for each, with the same time stamp, one triggered at sensor A while the other
triggered at sensor B, the dissimilarity value would be the Euclidean distance
between the two sensors. Given a trace, it would be the average distance of all
such pairs.

A large dissimilarity value represents a large disturbance in the path. This
means that if we make big changes to the original path, the dissimilarity value
would signal this. In contrast, if the dissimilarity value is small it means the
difference between the original path and the modified one is small.
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The goal is to have a small dissimilarity value, so that the simplified path
does not lose information contained in the original one. But dissimilarity by
itself is not sufficient. The smallest dissimilarity is zero, meaning the traces are
identical. We want to simplify the path, so dissimilarity needs to be used along
with the entropy metric.

The three methods we described earlier, based on RSSI, time and cycles
identify detections that have low quality. We can smoothen the data set by
dealing with the low-quality detections in two ways:

• Remove low-quality detections.

• Modify the detection by assigning it to the closest dominant sensor. The
closest dominant sensor is determined differently based on the smoothen-
ing method.

We calculate the dissimilarity on the data sets for which we modify the
sensors. We do this because the dissimilarity function requires the same number
of detections.

We calculate the entropy on a data set obtained by removing low-quality
detections. This gives us a more realistic entropy value. When we modify
detections to have the dominant sensor, we create many consecutive detections
with the same sensor, lowering the value of entropy.

We compare the trace-smoothing techniques using the Assen 2015 data set.
Each technique has one variable that controls the aggressiveness of the smooth-
ing, R for the RSSI method, ∆T for the time method and X for the cycle method.
To conduct a thorough comparison, we iterate through appropriate values for
these variables.

The ideal result would have small values for both entropy and dissimilarity.
This means that the new trace is less random (no going back and forth), while
preserving the general shape of the original.

The RSSI values in our data set are between -21 (strong) and -89 (weak), with
more than 95% of detections between -57 and -89. We set R to take all values
between -57 and -89. This ensures that we test all relevant thresholds.

∆T can take values from 1 to infinity. We test with small values as well as a
span of larger ones. We concentrate on small time frames as these will show the
most variation. If the time frame is too large, the changes will hide most of the
fine movement we are interested in.

X can take any positive integer as a value. We found it works best with small
values. We set multiple small values but go all the way to 100. Again, if we use
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Figure 3.4: Entropy and dissimilarity values after using the RSSI, time, and cycle
smoothing techniques

large values, the smoothing method will hide most movements. We found 100
to be sufficiently large to show the trend of setting this threshold.
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3.4.1 Entropy results

To compare the smoothing algorithms, we make use of the Assen 2015 data set.
We apply each of the smoothing techniques, using all the thresholds presented
above for all the traces in the data set. We do not perform any outliers-removal
or any other modifications to the data set and the traces. Figures 3.4a, 3.4c
and 3.4e show the calculated value of the entropy based on each setting of
the variable that controls the aggressiveness of the technique in terms of how
many detections are selected to be modified or removed. With an increase in
aggressiveness we observe a decrease in the entropy of the resulting traces. This
is expected. As the traces become smooth, there is less randomness in the order
the sensors appear in the trace.

If we keep increasing the X value for the cycle method the entropy continues
to go down, until all cycles are removed from all traces, be it real or anoma-
lous. This is not the case for the RSSI or time methods. When we increase the
aggressiveness for these methods, we reach a point where the entropy starts to
increase. After this point, the selected detections for removal or modification
are representative of the general path. When we remove or modify them, we
create gaps in which a device jumps from one sensor to one that is far away.

3.4.2 Dissimilarity results

It is not enough to smoothen a trace to a point in which entropy is low. When
we lower the entropy, we risk losing information by missing steps in the general
path. We use dissimilarity to measure how much we modified the traces.

Figures 3.4b, 3.4d and 3.4f show how the dissimilarity between the original
traces and the smoothed ones increases with an increase in aggressiveness for
each of our methods. This is true regardless of the method used to smoothen
traces.

3.4.3 Comparing the results

In order to better compare the techniques, we choose what we believe to be the
best aggressiveness setting for each one and compare the entropy and dissimi-
larity values for these settings. For the RSSI method we set the R threshold to
-75, representing the point of lowest entropy. We apply the same thinking to the
time-based method, and we choose ∆T to be 11 seconds. For the cycle-based
method entropy continues to go down with an increase of aggressiveness while
the dissimilarity continues to increase. This means that the point of lowest
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entropy is also the one with highest dissimilarity. We choose X to be 4 as the
point where the rate of drop in entropy becomes almost constant.

We choose the threshold to be one where the entropy is lowest because
this implies that the maximum amount of noise (cyclic movement) has been
removed from the traces. When the entropy increases again for the first two
smoothing methods, this is because detections that help in defining the path are
removed and consecutive detections appear at far-away sensors.
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Figure 3.5: Comparison between smoothening techniques, as well as the base and
random generated data set

The entropy and dissimilarity for these aggressiveness values is presented
in Figures 3.5. For a better comparison we add the base data set and a randomly
generated one. For the base data set we can see the entropy value, highest
compared to the smoothed traces. We calculate the dissimilarity by comparing
it to itself, resulting in the lowest value, zero. The randomly generated data set
has both the highest dissimilarity, compared to the base one, and the highest
entropy.

We extract one device from the data set and trace its path before and after
smoothing using each of the three techniques. The aggressiveness values are set
to the ones presented above. The path for a 10-minute window can be observed
in Figures 3.6. The green and red circles represent sensors that detected it.
The green ones represent detections with low RSSI values. The arrow shows
the ordering of detections. An arrow can end between sensors when multiple
sensors detect the device at the same time. In this case we make the arrow end
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(a) Basic data set (b) RSSI, R =−75

(c) Time, ∆T = 11 (d) Cycle, X = 4

Figure 3.6: 10-minute path made by a device (the circles are 100m visual guides)

in the geometrical center of the positions of the sensors that detected it.
In the base data set we can observe the back and forth behavior we previously

mentioned. Even though the RSSI and time-smoothened paths contain less
detections, and they both remove the low-quality ones based on RSSI, the back
and forth movement is still present. This is not the case for the cycle solution.
In that case, even though the path contains fewer detections, all the remaining
detections are representative of the general path.

This example was specifically chosen from our data set. The results are
not the same for all traces, but we have found that most are similar. The cycle
method we proposed appears to be the most efficient in removing noise from
the traced paths.
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Another argument in favor of the cycle-detection method is that it has the
highest increase in the number of static devices after the traces have been
modified to have the cycles removed. These devices had traces that contained
detections at multiple sensors. After the removal of the marked detections, the
trace contained detections at only one sensor. We manually verified a few traces
for devices which were identified as static after applying this method and we
discovered that the traces had detections similar to the ones in Section 3.2.4,
appearing to be devices that have constant, circular movement.

3.5 Summary

Crowd-dynamics monitoring platforms require data from a significant part of
the population and in order to gather data from many individuals they need to
be unintrusive. WiFi remote positioning is unintrusive because WiFi-enabled
devices, such as the smartphones that we always have with us, broadcast
information revealing our position.

This requirement of remaining unintrusive introduces some considerable
limitations to our crowd-dynamics monitoring platform. Systems that have
control of the target device can implement techniques that alleviate or solve the
following issues:

• The frequency of recorded positions is generally low, varies signifi-
cantly and includes large gaps. Positions are recorded at the frequency
at which WiFi frames are captured. But the frequency with which these
frames are sent is controlled by the target device. These frequencies de-
pend on the applications installed on the device as well as the usage
patterns of the user. Different devices can have different frequencies and
energy storage limitations have pushed operating system developers to
lower the frequency as much as possible. To make matters worse, there is
no way to know if a position is not recorded because no frame has been
sent, because the target device is out of range or because of interference
and we have shown that interference makes us lose a significant portion
of frames transmitted in the sensor range.

• The positioning accuracy is low. In some cases, we have discovered
that frames can be recorded at distances higher than 100m, although
this is not generally the case. Furthermore, the positioning accuracy
cannot be improved through trilateration because of the low percentage
of simultaneous detections of a device at two or multiple sensors. With a
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positioning accuracy of around 100m many short movements cannot be
identified when trying to trace them using the WiFi remote-positioning
data.

• Individuals may be represented in the data set with multiple device
identifiers. In order to preserve the privacy of their users, modern smart-
phone operating systems randomize the MAC addresses used during the
scanning process.

These limitations are the cause of circular-movement behavior which we
observed in the traces drawn from the WiFi remote-positioning data. Because
of these anomalies, it is difficult to perform simple tasks such as differentiate
between mobile and static devices.

We propose three different techniques to smoothen the traces and remove
these anomalies. We have validated our results using a measure of entropy and
one of dissimilarity as well as manual inspection of a sample of traces before
and after the smoothening algorithms have been applied.
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CHAPTER 4

Identifying movements

Positioning data can be used for individual analysis, but when we try to model
complex crowd information, such as flows, the use of raw data becomes an ob-
stacle. Throughout the tracing and positioning literature we identify a common
abstraction: superfluous traces can be summarized into periods of stops and
moves.

Periods of stops and moves describe individual dynamics in a concise man-
ner. This enables simple and efficient information extraction. Questions such as:
“How many people visited place B right after place A?”; “How does the flow starting at
location A split after it reaches location B?”; “How do the flows differ between morning
and afternoon?”; and many others can be simply modeled as queries on sets of
stops and move periods.

Periods of stops and moves cannot be naively extracted. Detecting a device at
two different positions does not mean it moved as this can be caused by the low
accuracy of the positioning technique. This is evident for GPS, where a device
placed inside a building records positions around that building, appearing as
very mobile over short distances. This movement is equivalent to the circular-
movement anomalies.

4.1 Contributions

We have identified three algorithms that extract periods of stops and moves
from GPS traces. We selected these algorithms so that they use different char-
acteristics of the trace: speed, direction, distance.

In order to validate and measure the performance of these algorithms on
WiFi remote-positioning data we conducted a small data-gathering experi-
ment for which we collected ground truth. This experiment was conducted as
part of the Assen 2016 data collection.
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We show that we can extract predominant characteristics from WiFi remote-
positioning data which we can then use to bring improvements to the algo-
rithm based on distance. The algorithm uses geographical distance which does
not consider the map of the city or the paths people prefer. Our solution replaces
the distance function to better reflect what can be observed from the data.

Instead of geographical distance we propose three metrics that can be used
to model the “closeness” of sensors. These metrics are based on the positioning
data itself. Furthermore, because they replace the distance function their use
enables the algorithm to be executed on traces for which the location of sensors
is not known.

4.2 Detecting Movements

There has been significant research conducted on extracting information out of
GPS traces. In contrast, WiFi remote positioning is a recent technology and the
research on information extraction from the generated data sets is still limited.
We searched the literature on information retrieval from GPS traces in order
to see what elements can be applied to traces collected using WiFi remote
positioning.

A vital processing step for GPS traces is the extraction of stop periods. By
identifying stop periods, we split the trace into periods when the device is
stopped and those when a device is moving. With this information we can
identify interesting locations flows and we set the groundwork to answer more
complex questions.

This is not a trivial task because GPS does not work indoor and offers several
meters accuracy outdoor, when a device stops or enters a building the trace
contains positions that are randomly spread in the area around the device. In
contrast, when the device is moving the points appear in a jagged line between
the last stop location and the next one. The traced line of consecutive positions
is jagged because of low positional accuracy and small movement speed of
pedestrians.

We selected three algorithms that identify stop periods in GPS traces: Cb-
smot [116], Dbsmost [117] and Stay Point Detections [118]. Multiple similar
algorithms exist in the literature but these three are the most popular and make
use of different characteristics of the trace: distance, speed, and direction of
movement.

The algorithms perform well on GPS data sets, but to our knowledge, we
are the first to measure their performance on WiFi remote-positioning traces.
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The main two differences between GPS and WiFi remote-positioning are: (1)
positional accuracy, from 5m for GPS [119], to over 100m on WiFi and (2)
detection frequency, which is fixed for GPS but can vary widely for WiFi. As
we showed in the previous chapters, positions obtained from WiFi remote-
positioning systems are interchangeable with the location of the sensor. Because
of this, the only step we are required to take to apply the algorithms on our WiFi
remote-positioning data sets is to replace the sensor ids with their positions.

The Cbsmot [116] and Dbsmot [117] algorithms use clustering to identify
points gathered around stop positions. Each cluster represents a stop, while
all points not in a cluster belong to a movement period. Both algorithms make
modifications to the dbscan clustering algorithm [120].

Dbscan clustering works by taking all the points in the data set and calculat-
ing the distance between any two pairs. Usually the Euclidean distance is used.
If the distance between two points is smaller than a threshold ε , the two points
are considered neighbors. Points with more neighbors than a limit minPts are
considered core nodes and are used to expand clusters. All neighbors of core
nodes will belong to the same cluster. If any of these neighbors are core nodes,
their neighbors will also be added to the same cluster. The process repeats until
all nodes are labeled to be part of a cluster or are labeled as noise.

Both cbsmot and dbsmot add restrictions to the original dbscan clustering
algorithm. In both cases positions must belong to consecutive detections to be
considered as part of the same cluster.

Cbsmot uses both the time difference and the geographical distance between
consecutive points as a distance function. By using both time and distance it
clusters points at which the device has a low speed. Dbsmot uses the change in
direction of movement as a distance function. The thinking is that when points
are grouped together the direction of movement changes frequently. This is on
par with the circular-movement anomaly.

Stay Point Detection [118, 121] is the simplest of the three algorithms. It
starts with a pivot at the first position, iterates through the next points and
updates the pivot to a new position when it finds one further than a set distance
threshold from the pivot. The thinking is that is we can find a threshold, so
that when positions are further than that set threshold, the person must have
moved.
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4.3 Algorithm Comparison

During the Assen 2016 data-gathering experiment we collected ground truth
for a small number of devices. We formed a group of four people, carrying
nine WiFi-enabled devices (smartphones and tablets) and walked through the
Assen city center on two consecutive evenings during the festival. To collect
the ground truth, we made notes of our movements and had two of the devices
constantly record their GPS position. We later analyzed the positions and made
a list of periods when we were moving and periods when we stopped.

Not all stop periods are relevant. Consider walking towards a shop and
having to stop at several red lights on the way. We argue that only the stop at
the shop is relevant as that is the goal of our movement. These relevant stops
usually have a longer duration. The minimal duration of stops determined by
each algorithm depends on their parameter settings as well as the accuracy and
the density of detected positions. Because we manually label the list of stop and
move periods representing ground truth, we consider only stops that have a
duration longer than five minutes. We determined empirically that under this
duration it is difficult to correctly label all stops.

We can set different parameters depending on the algorithm. For Cbsmot
we can set Max distance and Min time to control the maximum speed at which
the trace indicates the person is “moving” to consider the period a stop. For
Dbsmot we set the Min direction change and the Max tol. Finally, for Stay Point
Detection we set the Min distance. The values for these parameters are presented
in Table 4.1.

Table 4.1: Parameter values

Parameter name Values Measuring unit
Max distance 50, 60 ... 490, 500 meters

Min time 60, 120, 300, 600 seconds
Min direction change 15, 30, 45, 60, 75, 90, 120, 150 degrees

Max tol 1, 2, 4, 6, 10, 20
Min Distance 50, 60 ... 490, 500 meters

Max move duration 1800, 2700, 3600 seconds
Min stop duration 0, 20 ... 300, 600 ... 3300, 3600 seconds

We execute each algorithm on the raw data of the nine traces and select all
stop periods that are shorter than a Min stop duration threshold and re-label
them as move periods. This is done in accordance to how we select stop periods
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for the ground-truth. Furthermore, these short stop periods would clutter our
results, making it difficult to extract information. We deal with the large gaps
by using the Max stop duration threshold. If a move described by only two
detections has a longer time than the threshold between the two detections, we
remove it. If the threshold is large enough it ensures that a stop has taken place
during the period that would have otherwise been labeled a move.

After we extract stop and move periods for our nine devices, we compare the
results to the ground truth. Because there are only two possibilities, moving or
stopped, we consider this to be a binary classification problem. Periods marked
as moves are considered positive and all other are negative. For each algorithm,
we take each of the nine generated sets and compare each to the ground truth.
Because the sets have different time resolutions, we compare on a per second
basis. Every second of correctly identified movement is considered to be a true
positive (TP), all others are false positive (FP). All seconds of correctly identified
stop periods are considered to be true negatives (TN), while all others are false
negatives (FN). We then use these values to calculate the F1 score 4.1. We tested
each algorithm with multiple parameter settings (for the parameters presented
above) and extracted the results for the parameter setting that had the highest
average F1 score for each algorithm. The results are presented in Figure 4.1.

F1Score =
2∗T P

2∗T P+FP+FN
(4.1)
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Figure 4.1: Comparing algorithms

Because of the large gaps between consecutive detections, even if our algo-
rithm was perfect, we cannot generate a set of stops and moves identical (with
a per second accuracy), to the one from ground truth. To show this, we added
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in Figure 4.1 next to the measured F1 scores of the three algorithms the “Perfect”
result. “Perfect” is an algorithm that uses the ground truth to label detections
as belonging to a stop or a move period. It then groups detections to form a
set of stops and moves. Because of the gaps between detections, state changes
between two detections are mislabeled. Considering the “Perfect” algorithm
does not reach an F1 score of one, it is impossible for any other algorithm to do
so. “Perfect” represents the ideal upper limit.

The least accurate method is Dbsmot. Unlike for GPS traces, WiFi has a lim-
ited set of available positions. Without trilateration (which requires detections at
multiple sensors with stable RSSI values), the number of available positions in
WiFi traces is equal to the number of sensors. It is possible to consider positions
between two or more sensors even without trilateration, but that still requires
simultaneous detections. Simultaneous detections are so rare we decided to
dismiss them and simply consider the set of possible positions to be the set of
locations of the sensors. In contrast, GPS offers an almost continuous position-
ing scheme for the entire earth surface. Because of the limited set of positions,
there are frequent direction changes. It takes the length of a handful of sensor
detections areas, to move from one side of the city center to the other, at which
point the direction must change significantly for the movement to continue.
When we analyze GPS traces we can observe that due to the high frequency of
positions, the direction of movement does not change much, however, when
the person has stopped positions are recorded seemingly random around the
individual making the trace contain a high number of large angle direction
changes.

The other two algorithms, Cbsmot and Stay Point Detection, have similar
results. However, Stay Points is much simpler to implement and runs faster. For
our data set, running the algorithms with all the parameter settings from Table
4.1, the execution time was in the order of minutes for Stay Point Detection and
in the order of days for Cbsmot. Dbsmot is even slower because of the multiple
computationally intensive calculations for direction of movement.

4.4 Algorithm Robustness

Algorithms for extracting stops and moves do not offer perfect results. This
is especially true for WiFi remote-positioning data, where the low frequency
and low positional accuracy makes it difficult even for humans to determine
if a person is moving or is stopped based solely on the positioning data. The
accuracy of the algorithms is dependent on walking speed and frequency of
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detections.
Our aim is to explore the effect that differences in walking speed and fre-

quency of detections have on the accuracy of the three algorithms. Having
this information allows for targeted deployments based on the application and
context.

We argue that it is impossible to set a real-life experiment in which to pre-
cisely control the walking speed of many people. As an alternative, we build a
WiFi remote-positioning data set based on simulated movements and detections.
This allows us to control the speed as well as the frequency of detections.

4.4.1 Generating a synthetic WiFi remote-positioning data set

We simulated the movements of 100 individuals over the street map of the Assen
city center (one of the locations used in most of our data-gathering experiments).
We placed sensors in the same positions as they were placed during the 2016
festival and recorded detections whenever an individual was within 100m of a
sensor. We use the 100m value as it is the advertised WiFi transmission range.
However, there is no other element in our simulation that assumes the use of
WiFi. The data could be generated by any repurposed communication protocol
remote-positioning technology or any radio-based positioning system. This
makes the results and analysis easily transferable to a different technology.

We used a movement model similar to randomwalk. The simulation starts
by placing everyone at a random location on the street map. For each of the
100 individuals, we select another location which is more than 300m away from
the current one and let her follow the shortest path towards it. Once the new
location is reached another one is chosen based on the same criteria. We chose
300m as it eliminates a lot of short movements which we know we cannot detect,
and it provides a good trade-off between the sensing radius and the scale of the
entire sensing area. The individuals walk for one hour and stop for one hour.
This is repeated for 24 hours after which the simulation ends.

Individuals move using a fixed walking speed. We split the 100 individu-
als in groups of 10 and give each group a speed between 0.1m/s and 2m/s.
The normal human walking speed is 1.4m/s, by comparison. The results are
averaged over each group of 10.

We gather detections every second. This results in a data set which has, on
average, 2.5 detections per second per device. The number is bigger than 1
mostly because a device can be simultaneously detected by multiple sensors.
To simulate different frequencies, which are affected by the chance of frame
loss, we randomly sample the entire data set of recorded positions. As such,
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we create 10 data sets by sampling between 0.01% and 100% of detections (the
percentages are chosen on a log scale).

To reiterate, we have 10 data sets, sampled based on different percentage
of devices, consisting of 10 groups of 10 individuals each, walking at a fixed
speed for the group. This results in 100 different settings for speed and detection
frequencies.

4.4.2 Results - simulated data

We run the algorithms on the data sets and compare the results with the ground
truth. We average the accuracy of correctly labeling all one second periods,
over 10 representing the number of devices for each speed setting. We do not
expect perfect accuracy. This is because individuals can take paths that lead
them outside the sensing area.

Each of the algorithms that we compare has different parameter settings.
For each we chose the parameter setting that maximizes the average accuracy.
This enables us to conduct a fair comparison.

Figure 4.2 shows the F1 Score accuracy values that we calculated for the
Stay Point Detection algorithm. The highest accuracy is achieved when the
speed and percentage of detections are high. This is because it is simpler to
differentiate between stops and moves if the moves have a high speed, and if
we have a lot of data.

 0

 0.5

 1

 1.5

 2

0.01 0.1 1 10 100

S
pe

ed
 (

m
/s

)

Detections (% of total) log scale

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
cc

ur
ac

y

Figure 4.2: Effects of speed and detection frequency on the accuracy of Stay Point
Detection

The number of detections has a smaller effect compared to that of speed. We
do note that real-life detections are generated at intervals that better match be-
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tween 0.1% and 1% of detections recorded every second. Even in the simulated
case, the accuracy drops significantly when the number of detections is so low.
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Figure 4.3: Effects of speed and detection frequency on the accuracy of Cbsmot

The accuracy values of the Cbsmot algorithm are presented in Figure 4.3.
What is interesting is that this figure presents two different areas with high
accuracy values. This is because the algorithm is based on clusters that represent
stop periods. When the number of detections is low, smaller clusters are formed
because consecutive detections are recorded at far-away sensors. As such, the
accuracy of the algorithm for labeling moves is increased. In contrast, for many
detections, the accuracy is high because many simultaneous detections force
the separation of clusters and labeling of more moves.

We did not apply the same procedure for Dbsmot. The algorithm uses the
most computational power and the accuracy for the case of high detection rate
and high speed was considerably lower compared to the accuracy of the other
two algorithms.

4.5 Improvements on the distance function

Based on the previous results we choose Stay Point Detection as the algorithm
on which to improve. Stay Point Detection uses a distance function, which in
the case of GPS, represents the geographical distance between two positions.
We used the same distance function for our WiFi remote-positioning data set.
However, the circumstances are different from the GPS case. Possible positions
are few and they represent the locations of the sensors.
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The geographical distance is not the best representation of the length people
need to walk to get from one place to another. Consider two sensors with a
building between them, pedestrians cannot move in a straight line between the
two sensors, instead they need to go around the building.

Using the street network and replacing distance with the length of the
shortest path from one sensor to another is an alternative. However, street
maps are not always available. Consider sensors placed inside buildings. When
street maps are available, they lack detail, for instance, popular paths may be
hidden between buildings or through parks. Pedestrians may prefer them in
order to avoid long walks. Furthermore, street maps do not reflect pedestrian
preference. A longer path between two sensors might be preferred if it offers a
more pleasurable walking experience, caused by placement of shops or green
spaces.

Our goal is to obtain a distance function based on the data itself. We can
take a WiFi remote-positioning data set and count the numbers of detections of
a device at one sensor followed by detections at another. If we do this for all
sensor pairs, we obtain a set of values that represents the closeness of sensors, as
it appears from the movements or simultaneous detections of people. It comes
naturally that sensors close to each other have a high number of consecutive
detections. In contrast, it is unlikely that sensors placed further away would
have consecutive detections because sensors in between them could detect the
device.

To better understand this closeness value, it is simpler to consider a higher
scale. Say we have sensors in two cities. The number of consecutive detections
at a pair of sensors where one is in one city and one in the other is expected to
be very small. However, if we place sensors at the airports connecting these
two cities, we would observe a high number of consecutive detections. We
claim that from a transportation standpoint, airports are “close” to each other as
detections at the two of them represent a move and no intermediate detections
are recorded during the flight.

Extracting these closeness values does not require the use of geographical
positioning or any topological information. It uses only the positioning data set.
This makes it possible to apply this distance function for any positioning data
set, even if the positions of sensors are not known.

WiFi remote-positioning applications have a limited set of sensors. This,
in turn, means there are a limited set of closeness values,

(n
2

)
, where n is the

number of sensors. We can model a sensor closeness graph, where the sensors
are nodes and these closeness values are the weight of the edges between them.

Sensor Neighborhood Graphs
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We define multiple Sensor Closeness Graphs. Let SCG = (S,E) be a sensor
closeness graph where each node S is a sensor and each edge E has a weight
equal to the closeness between the two sensors at its ends.

For each SCG we define a set of sensor neighborhood graphs (SNG). These
graphs have the same nodes as the SCG but contain only the edges that have a
weight higher than a set ε threshold. An SNG represents sensors close enough
to each other to be considered neighbors. With the sensor neighborhood graphs
we can better understand and validate the closeness functions as well as make
computations more efficient. The distances only need to be calculated once and
the verification can be made whether the edge exists in the graph or not.

We have identified the following as distance functions that can be used to
build sensor closeness graphs:

Consecutive detections (CON)
Given the set of detections for a device ordered by time, and sensor, we define

consecutive detections as two detections of a device, one at one sensor, and
one at another. We do not consider how much time passes between detections;
we only keep the restriction that they must be consecutive in the set. It comes
naturally that sensors close to each other have many such consecutive detections,
while those that are far have few. The few consecutive detections at sensors
placed far apart can be caused by lost frames at the sensors in between them or
gaps in transmission period.

We count the number of consecutive detections for each sensor pair and use
the resulting value as the weight of the edge between the two sensors forming
the pair. The edges and counting process are formally described in the formulas
at 4.2. Here, CCON(si,s j) represents the set of detections recorded at sensor s j
after detections at sensor si and ECON represents the sensor closeness graph
based on consecutive detections.

We remind the reader that the notations have been defined in Chapter 2.

CCON(si,s j) = {k|k ∈ [1,R];∃λk,λk+1 ∈ Λ;

λ
S
k = si;λ

S
k+1 = s j;λ

D
k = λ

D
k+1}

ECON = {(si,s j,wi j)|∀si,s j ∈ S;wi j = |CCON(si,s j)|}
(4.2)

Simultaneous detections (SIM)
In WiFi remote-positioning data sets we can have consecutive detections

with the same, or different time stamps. We consider two detections to be
simultaneous if they have the same time stamp. This means the device is in
range of both sensors at the same time. These detections are counted similarly
to the consecutive ones, but they have the added restriction of having to occur
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at the same time. We note that it is possible for detections of different frames to
have the same time stamp. Building graphs based on simultaneous detections
is formalized in formulas 4.3. Here, CSIM(si,s j) represents the set of detections
recorded at sensor s j at the same time as sensor si and ESIM represents the sensor
closeness graph based on simultaneous detections.

CSIM(si,s j) = {k|k ∈CCON(si,s j);λ
T
k = λ

T
k+1}

ESIM = {(si,s j,wi j)|∀si,s j ∈ S;wi j = |CSIM(si,s j)|}
(4.3)

Simultaneous detections validated with frame sequence number (SEQ)
We record detections with a time resolution of one second. However, the

WiFi-frame-transmission frequency is much higher. This means that even if
we consider detections to happen simultaneously, this is not a guarantee that
the two sensors receive the same frame. Most WiFi frames contain a sequence
number, making it simple to distinguish frames. In the Assen 2016 data set
we recorded these sequence numbers along with every detection. We use λ N

to denote the sequence number recorded with a detection. For this closeness
distance we keep all the restrictions from the previous ones and add the restric-
tions that the detections should be of the same frame, based on the sequence
number, as can be observed in formulas 4.4. Here, CSEQ(si,s j) represents the set
of detections recorded at sensor s j at the same time as sensor si, confirmed by
the sequence number, and ESEQ represents the sensor closeness graph based on
simultaneous detections validated with the frame sequence number.

CSEQ(si,s j) = {k|k ∈CSIM(si,s j);λ
N
k = λ

N
k+1}

ESEQ = {(si,s j,wi j)|∀si,s j ∈ S;wi j = |CSEQ(si,s j)|}
(4.4)

Based on our formulas we can conclude that CSEQ ⊆ CSIM ⊆ CCON . This
translates in smaller weights for ESIM compared to ECON and even smaller ones
for ESEQ. Because the weights are smaller it is also more likely that edges have
weights of zero, having a clearer separation between sensors that are close and
those that are far.

Geographical Distance (DIS)
To better compare the distance functions, we model the geographical dis-

tance between the sensors in a similar manner to the three distance functions
presented above. We build a sensor distance graph where the weight of an edge
represents the geographical distance between the sensors. From this graph we
can build SNG graphs by keeping only the edges where the weight is smaller
than ε . The formula representing the edges for this sensor distance graph is 4.5.
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EDIS = {(si,s j,wi j)|∀si,s j ∈ S;wi j = GPSdistance(si,s j)} (4.5)

By having the SNG we can modify the Stay Point detection algorithm so
that it does not have to calculate the distance every time. Instead, given two
detections it verifies if the two sensors that recorded the detections are connected
in the SNG. If they are connected, it considers the person has not moved and if
the opposite is true, the person has moved, and the pivot is updated to the new
sensor.

4.6 Improvement Analysis

We build the graphs as described in the previous section based on the Assen
2016 data set. To have a better understanding on how similar these graphs are
we look at the SNGs corresponding to each of them. We start with SNGs that
contain zero edges. We then select appropriate values for the ε threshold so that
we add one edge at a time to the SNGs. Finally, the SNGs will contain all edges,
forming complete graphs. We remind the reader that sensor neighborhood
graphs contain edges with weights larger than ε for the sensor closeness graphs
and smaller than ε for the sensor distance graph.

For each pair of distance function and every number of edges in the SNGs we
calculate the percentage of edges in common. The results are presented in Figure
4.4. The differences appear because depending on the distance function the
order of edge weights differs from one graph to the other. To better understand
the results, we added two graphs whose edge weights are chosen to be random.
We compare the two random graphs using the same technique as with SNGs,
by adding one edge at a time to both. As we can observe for Rand-Rand, the
percentage of edges in common grows close to linearly with the number of
edges.

The most similar SNGs are generated using the consecutive and simultane-
ous distance functions (CON-SIM). Simultaneous detections represent a third
of consecutive ones. The graph generated using the sequence number distance
function is the closest to the one based on the geographical distance (DIS-SEQ).
This indicates that the distance function which uses the sequence numbers is
our best replacement for geographical distance.

To understand the effects of different distance functions on our data set we
selected a sample of 100 devices and used the modified Stay Point Detection
algorithm that takes SNG instead of distance to partition traces into stops and
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Figure 4.4: Comparing graphs by counting edges in common

movements. We selected appropriate values for ε so that we add one edge at a
time to the SNG and we executed the algorithm using all the resulting graphs
for each distance function. The number of movements is presented in Figure 4.5
and the total duration of stays is presented in Figure 4.6.
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Figure 4.5: Comparing graphs based on the number of movements

With an increase in the number of edges we can see that more movement is
identified as a stop period. When the SNG is full no movement can be identified.
This is normal, as all sensors would join to act as one, very large sensor.

The distance function based on the sequence numbers stands out in both the
number of movements and the stay durations.

To further test the performance of the new distance functions, we manu-
ally selected two groups of 100 devices from our data set. One with devices



4.6 Improvement Analysis 81

 97.8

 98

 98.2

 98.4

 98.6

 98.8

 99

 99.2

 99.4

 0  100  200  300  400  500  600  700  800

T
ot

al
 D

ur
at

io
n 

O
f 

S
ta

ys
 (

%
)

Edges

DIS
CON
SIM
SEQ

Figure 4.6: Comparing graphs based on the total duration of stays

we identified as mobile (M) and one with devices identified as static (S). We
executed Stay Point Detection, using the four different distance functions, on
these two groups of devices to verify if the devices are correctly identified as
static or mobile respectively. A device is considered mobile if it contains at least
one move period, otherwise it is static. As we can see in Figure 4.7 regardless of
the distance function, when we add more edges to the SNG fewer devices are
identified as mobile in either group. The static devices are mislabeled when we
have few edges in the sensor graph because any detections at multiple sensors
not connected by an edge is considered movement of the device. With many
edges in SNG movements are no longer identified.
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Figure 4.7: Comparing graphs using static and mobile devices

Only in the case of the distance function based on the sequence number do



82 4 Identifying movements

we have perfect labeling of both groups. The values of ε for which we have
perfect labeling are marked in Figure 4.7 with a gray bar. For the other distances,
the ε threshold can be set to perfectly detect moving devices, or perfectly detect
static devices, but not both.

To confirm that the distance function based on sequence number brings
an improvement over the geographical distance used by Stay Point Detection
we compare the results after applying the algorithm on the traces for the nine
devices for which we have ground truth. The F1 scores when comparing the
results from the two Stay Point Detection methods as well as the “Perfect”
solutions are presented in Figure 4.8. Although the improved version of Stay
Point Detections does not offer a higher F1 score for every device, the average
is higher. The number of edges in the SNG for the improved version is set to
be the smallest one for which the algorithm offers perfect accuracy in labeling
mobile and static devices as was presented in Figure 4.7.
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Figure 4.8: Comparing algorithms

4.7 Summary

The number of positions in a crowd dynamics monitoring data set is not a good
estimate of the ability to use this data to model crowd dynamics. A person
sitting can be detected many times, yet none of these detections add information
when we try to model flows.

Crowd dynamics represent the sum of the movement of the individuals
inside the crowd. The more movement we can describe, the more realistic our
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crowd model would become. As such, movements are the summary of a data
set of positions.

The number of movements is a good estimate of the amount of information
that we can find inside a data set of positions. But detecting a device at two
different positions does not mean it moved. The low positional accuracy and
the high frame loss generate many cases where traces based on the positional
data show movements where there are none.

We have identified three algorithms that find movements based on the
positional data. These algorithms were designed to work for GPS where a
similar circular-movement behavior appeared but on a much smaller scale. We
compared the three algorithms by measuring the accuracy of splitting a trace
in periods of stops and moves and determined that the stay point detection
algorithm performed the best. We then improved the algorithm by replacing
the distance function with a one calculated based on the data set of positions.

Our improvement manages to bring a slightly higher accuracy, but it does
this without requiring as input the position of the sensors. Remote positioning
platforms built on top of existing WiFi networks may not have information on
the position of the sensors.

More importantly, we showed that even an algorithm that would perfectly
label each detection as one where the device is moving, or it is stopped cannot
achieve perfect accuracy. It would have a mean F1 score of 0.86. This is because
the time between detections is generally too large. Furthermore, our best
implementation has achieved an average F1 score of only 0.7. This shows how
difficult it can be to extract useful information out of WiFi remote-positioning
data.
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CHAPTER 5

Sensor density and placement

New, innovative applications make use of data stores to extract information on
complex systems. With more data, the accuracy and correctness of the extracted
information can be increased. However, gathering more data is not always a
trivial task.

We have shown that data obtained from WiFi remote-positioning systems is
sparse, limiting the amount of information that can be extracted. Most devices
have few detections, others have large gaps between detections, while others
may not be detected at all. Without any control on the target devices, the only
way to increase the amount of data, and in turn information, produced through
WiFi remote positioning is by increasing the number of sensors. More precisely,
by increasing the density of sensors. Adding more sensors while also extending
the interest area brings more data, however this data cannot be used to answer
more specific questions about the original interest space.

Studying the effect that the density of sensors has over the sparsity of detec-
tions, and more importantly on the amount of information that can be extracted,
is vital. With more information we can improve crowd-dynamics models,
and if we can determine an optimal density of sensors, we can lower the cost
of monitoring platforms. The sensors represent the main factor in the cost
of a crowd-dynamics monitoring system based on WiFi remote positioning.
Lowering sensor density makes crowd-dynamics monitoring platforms more
accessible.

Low sensor density is especially important for projects that need to cover
large areas, such as entire cities. We are not aware of any deployment of WiFi
remote-positioning systems that cover an entire city or of any research that
concentrates on lowering the density of sensors for WiFi remote-positioning
applications.

Sensors are identical, meaning the only property that changes from one
sensor to the other is their position. The number of sensors and their position
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are closely linked properties, and as such can be addressed at the same time. As
we explore the effects of sensor density, we take positions into account and try
to understand what makes a “good” sensor placement.

5.1 Contributions

We study the effects that the sensor density has on the amount of information
that can be extracted from WiFi remote-positioning data sets. The amount of
information is closely related to the number of stops and moves that can be
extracted from the data set. This is because, stops and moves, as they are
described in the previous chapter are the summary of a trace.

To thoroughly study the effects of changing the density of sensors we require
a large ground-truth data set containing data on many individuals. It is arguably
impossible to gather such a ground-truth data set. Instead we simulate the
movement of individuals and the detections they would trigger. We make
use of a real and a synthetic map for the simulated movement and validate the
results with a smaller real-life data set for which we obtained ground truth.

To obtain different densities of sensors we perform our analysis on subsets
of a data set, subsets that contain detections from a selection of sensors. This
permits us to compare data of the same individuals, same movements, and
eliminates the risk of random variations affecting our results.

We explore our measurements and explain them through a deeper analysis
on sensor placement and the effect of unique detections. Finally, we com-
bine our findings into a short guide on sensor placement for WiFi remote-
positioning platforms.

5.2 Related Work

In most positioning systems sensor density influences positional accuracy. Con-
sider GPS, where accurate positioning can be obtained only when signals from
more than three satellites are received [122] and accuracy increases with the
number of satellites [123]. However, this increase is limited [124] and after a
threshold is reached, receiving signals from more satellites offers no measurable
increase in positioning accuracy. Increasing positional accuracy by increasing
the number of sensors does not work for WiFi remote-positioning systems. We
have shown in previous chapters, that the sparsity of simultaneous detections
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and the high variation of the RSSI, limit positioning accuracy to be dependent
on only one sensor.

Gathering crowd-dynamics data using remote-positioning based on commu-
nication protocols is a relatively new technique, so there are limits to how far the
state of the art has gone. A topic that has not been sufficiently addressed is the
effect of the density of sensors and their position on the sparsity of data and the
amount of information that can be extracted from it. The closest work that deals
with this problem is [125], but the scope of their work is limited to determining
optimal placement of Bluetooth sensors on a linear path, in practice, a highway.
This solution, although interesting, is not enough when we consider crowd
dynamics for complex street networks.

There is the assumption that having more sensors, and with them more data
collected, means an increase in the amount of information that can be extracted
from this data. However, the number of sensors is a main factor to the financial
cost of a monitoring platform and because of this, most research is focused on
minimizing the number of sensors while maintaining an acceptable level of
information that can be extracted from the data which the platform provides.

One solution applies to measurements that are representative of not just the
precise location of the sensor, but the area around it. This is the case in [126]
where they show how to determine the optimal number of sensors for structural
health-monitoring systems. Defects in a building affect and can be detected over
large areas. Similarly, the work of [127] demonstrates the use of a technique of
minimizing the number of sensors for water-supply networks. This is based on
the fact that pollution distributes itself uniformly through air or water. As such,
making punctual measurements is representative of large areas around it.

Unlike the cases where the measured variable is continuous across space,
crowd-dynamics monitoring platforms generate complex, interdependent data.
This data can be aggregated in order to obtain continuous values, but this limits
the use cases. An example would be aggregating raw detections to discover
the density of people over space. However, more interesting uses for crowd-
dynamics monitoring data requires individual traces. Individual traces cannot
be modeled such that they exhibit continuous variation over space. A simple
example where trace data can be used is to determine the speed of crowd flows,
which is an average of the speed of individuals it represents. Different crowds
may have different speeds which may not be related. Another example would
be the likelihood of landmarks to be visited in a given order.

Minimizing the number of sensors has been studied extensively for a more
general case, the one of sensor networks. The solutions that deal with generic
sensors and sensor networks address mainly the coverage that the sensors offer
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in both a 2D environment [128] as well as a 3D one [129]. The latter offers a
technique to place sensors on complex geographical landscapes such as hills
or mountains. Another goal can be to try and maximize the exposure that the
monitored elements have using a specific sensor placement [130]. We have
conducted previous research on this topic [131] considering cases where sensors
are mobile.

We argue that we cannot assume that coverage or exposure are the only
factors that influence the amount of information that can be extracted from WiFi
remote-positioning data sets. Take the case of stops and moves, two well-placed
sensors, one at the workplace and one at home can offer all the required data to
determine the stop and move periods for an individual, if the movements are
limited to these two locations. Time constraints could even reveal clues about
what path was taken between the two. These results can be applied on our
work while keeping the goal of extracting relevant movement information and
allowing us to remove the constraint of having full coverage. This could permit
lower sensor density while maintaining acceptable results.

5.3 Procedure

We showed in Chapter 2 that changing sensing parameters such as the moni-
toring channel does not affect the data generated by WiFi remote-positioning
systems. Other sensor software modifications, such as those that allow more
data to be extracted from the WiFi frames, bring privacy concerns on which we
are not willing to compromise.

The only changes that we can bring to WiFi remote-positioning systems,
other than changing the recording parameters of the sensors, pertain to the
number and position of sensors. Of course, if we use more sensors to gather
data on a larger area, we would gain more data and more information. What
we are interested in is changing the number of sensors while covering the same
area. This translates into analyzing the effects of sensor density.

We aim to study the effects that sensor density has on the amount of in-
formation that can be extracted from WiFi remote-positioning data sets. We
expect the number of raw detections to grow almost linearly with the density of
sensors. However, we do not know what effect this growth has on the amount
of information that can be extracted.

The amount of information can be increased by improving positional ac-
curacy; however, improving positional accuracy is not possible. Increasing it
requires the rate of simultaneous detections to be significantly increased. As-
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suming enough simultaneous detections, we can use trilateration to calculate
positions with higher accuracy. Considering the high rate of frame loss as well
as the highly unpredictable nature of outdoor sensing, this assumption requires
a sensor density which is not realistic. Instead of addressing the positional
accuracy, we focus on the information that can be extracted while maintaining
positional accuracy obtained without trilateration.

We explore the effect of sensor density in order to achieve two goals. First,
we want to determine if we can add more sensors to an existing WiFi remote-
positioning platform in order to increase the amount of information that can
be extracted. We showed in the previous chapters that the amount of data and
information generated by WiFi remote positioning is underwhelming. Secondly,
if we can lower sensor density while maintaining the same level of extracted
information, we can lower the financial cost of WiFi remote-positioning plat-
forms.

The amount of information output by crowd-dynamics monitoring platforms
can be correlated with the number of stop and moves that can be identified
using the positioning data. Stop and moves are a short, simple representation
of the dynamics of an individual and can be used in modeling crowd dynamics.

Algorithms that extract stop and moves do not offer perfect labeling and
this is an impediment if we want to make comparisons using the numbers of
stops and moves. Low positional accuracy during a stop period can be labeled
as movement. Instead of using the number of stops and moves to represent
the amount of information, we use the accuracy of correctly labeling periods
as stops or moves given positioning data and ground truth. High accuracy
translates in the ability to extract more correct stops and moves and in turn
more information. By using accuracy as a comparison metric, we can determine
the amount of information without being affected by the bias introduced by the
stop and move algorithm.

To extract stops and moves we use the Stay Point Detection algorithm. We
showed in the previous chapter that this algorithm is the best performing for
WiFi remote-positioning data sets. For the analysis in this chapter we use a
maximum distance threshold of 220m, maximum movement period between
two detections of one hour and minimum stay period of 20 minutes. We
determined these values empirically when we studied the performance of the
algorithm.

To measure accuracy, we use the F1 score to compare the periods of stop and
moves generated by the stay point detection algorithm with the stop and moves
from the ground truth. The F1 score gives equal importance to precision and
recall and this is ideal when one class (such as the total stop time) dominates
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the data set. Because we have only two labels, we can simplify the accuracy
calculations by considering moves to be positives and stops to be negatives. We
then compare the labels for every one second interval and count the number of
true positives (TP), false negatives (TN) and false positives (FP). We use these
values to calculate the F1 score using Eq. 5.1.

F1Score =
2∗T P

2∗T P+FP+FN
(5.1)

Comparing the accuracy of extracting stop and moves from data sets gath-
ered using different sensor densities would require many data gathering experi-
ments. During these experiments, we would have to obtain large amounts of
ground truth. It is not feasible to collect crowd-dynamics ground truth on a
large scale. Furthermore, for each sensor density, we would need to conduct
multiple data-gathering experiments in order to mitigate for randomness in
crowd dynamics. We must limit our analysis to smaller data sets (for which
ground truth can be obtained) and simulations.

To conduct our analysis, given a small real-world data set and while avoid-
ing random phenomena, we propose varying the sensor density by selecting
multiple subsets from a main positioning data set. Each data subset contains
only detections recorded at a subset of sensors. This allows us to compare
the same crowd dynamics given different sensor densities while eliminating
random phenomena that could appear in one set but not the other. Let SA ⊂ S be
a subset of sensors. The subset of detections ΛA at sensors SA is extracted using
equation 5.2. Here, λi represents a detection from the entire set of detections Λ

and λ S
i represents the sensor that recorded the detection.

ΛA = {λi ∈ Λ;∀i|λ S
i ∈ SA} (5.2)

Extracting the subset using this method results in a data subset which is
equivalent to the one gathered using only the selected sensors. This is true
because sensors do not interfere with each other. Adding one sensor does not
influence the data set gathered by the existing ones.

Given a data set gathered using N sensors we can extract data subsets having
detections recorded at a number of sensors k, with k ∈ [1,N]. The problem is that
for each value of k we have

(N
k

)
possibilities as to which k sensors to select. If we

were to analyze all possible combination of sensors given all values for k, we
would have to process 2N−1 data subsets. This value is obtained using Eq. 5.3.
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N

∑
k=1

(
N
k

)
=

N

∑
k=1

N!
k!(N− k!)

= 2N−1 (5.3)

With so many possible choices of sensor subsets, we cannot analyze all
possible data subsets. However, we need to analyze only enough so that we
have an overview of the accuracy values. We propose the following scheme: for
each value of k, we make 10 choices at random, along with one choice so that
we obtain the highest accuracy, an upper bound, and one to obtain the lowest
accuracy, a lower bound. This results in 12 sensor samples for each k value. We
make the 10 random choices in order to show what information can be extracted
if the location of sensors is left to chance.

Finding the real lower and upper bound for each k can only be done by
analyzing all

(N
k

)
choices of sensors, which quickly becomes infeasible for many

reasonable combinations of N and k. Instead, we propose a greedy algorithm to
find the selection of sensors for the lower and upper bound by incrementally
selecting sensors for consecutive values of k. The goal of the algorithm is to
obtain data subsets that can be processed into periods of stops and moves
having a minimal or maximal accuracy. Accuracy which would be similar to
the one for the real lower and upper bounds.

The greedy Algorithm 2 is initialized by selecting a pair of sensors that offer
the lowest, respectively highest accuracy for k = 2. We do not start at k = 1
because one sensor can detect no movement, meaning they would all have
the same F1 score of zero and the choice of sensor would be left to chance.
Starting at k = 2 ensures that both sensors are specifically selected to minimize
or maximize accuracy. After we discover the two sensors, we increase k one step
at a time and for each step we select another sensor so that when we add it to the
previous set we would minimize, respectively maximize the accuracy. For each
k we need to go through all sensors that are not already selected. Algorithm
2 presents the greedy implementation on how to find the upper bound. An
algorithm that finds the lower bound is symmetric to this one. The max variable
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is changed with min and so are the signs inside the i f clauses.

Data: Λ, S, N
Result: SA
SA = /0;
max = 0;
for si,s j ∈ S; i 6= j do

acc = F1(StayPointDetection(Λ[{si,s j}]),GroundTruth);
if max < acc then

acc = max;
SA = {si,s j};

end
end
for k=3 to N do

for si ∈ S;si /∈ SA do
acc = F1(StayPointDetection(Λ[{SA,si}]),GroundTruth);
if max < acc then

acc = max;
sa = si;

end
end
SA = {SA,sa};

end
Algorithm 2: Finding upper bound subsets using a greedy approach (analo-
gous for lower bound)

Using the greedy method we have to run the Stay Point Detection algorithm
only on N(N−1)/2 data subsets. Although still large (the processing took several
weeks), analysis on these many data subsets is feasible, compared to what is
required to test all 2N−1 subsets. We believe that analysis based on data subsets
obtained with the greedy method is sufficient to support our conclusions.

We apply this procedure in order to determine what is the dependency
between the accuracy of labeling stops and moves and the sensor density. Fur-
thermore, by using the greedy algorithm to build the data subsets for the
lower and upper bounds of the accuracy, one sensor at a time, we obtain two
ordered sets of sensors. We can analyze these ordered sets in order to gain
insight on the effects of sensor positioning.
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5.4 WiFi remote-positioning data sets

To determine the effect of sensor density on the accuracy of labeling stop and
move periods we analyze three different data sets. Two of these data sets are
simulated, one using a grid map, the other using a real map. We use simulated
data sets because this way we can provide large amounts of ground truth
compared to real-world data-gathering experiments. The real map is the city
center of Assen, where we performed most of our data-gathering experiments.
This allows us to compare the results for the simulated data set with the real-
world one, obtained in Assen in 2016.

5.4.1 Simulated data on grid map

We use a grid map in order to ensure that the shape of a specific city does not
affect our results. The regularity of the grid structure prevents any bias that
may be added when using the map of a specific city.

We built a map of roads organized as a grid. Every intersection has two
roads connected at right angles. The distance between two intersections is fixed
and set to 100m. We chose this value because it allows every street sector to
have between 2 to 10 houses, which is realistic, and because it simplifies the
placement of sensors. The entire street map will be 900m by 900m and will have
a total of 100 intersections. We chose the distances so that if we place a sensor
at every intersection, the entire area will be completely covered. Although this
map is only a mock-up, some real cities, especially in the USA, share this grid
structure.

The grid map, Figure 5.1, shows sensor locations as small white circles. The
large white circle has an 100m radius, representative of the advertised distance
of the WiFi range. The black lines connecting the small white circles represent
the streets and are the only areas that pedestrians can use.

We built simulated data sets using sensor ranges of 50m, 100m and 150m.
Other than the detection ranges all configurations are identical and the simula-
tions share the same movements. In Subsection 5.5.3 we show how the results
can differ depending on the sensing range. However, the differences are not
substantial and for our main analysis we use the range of 100m.

5.4.2 Simulated data on Assen map

Several of our data gathering experiments took place in the city of Assen, The
Netherlands. The map of Assen as well as the locations where our sensors were
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Figure 5.1: Grid map, sensor placement

placed during the experiments are shown in Figure 5.2. Here, the streets are
white, and the sensors are spread in the important areas of the city center. A few
sensors were placed further away, and they are not represented in this picture.
During our simulation pedestrians make use exclusively of the street network.

In order to obtain comparable results with the real-world data sets, we main-
tain the same sensor placement for the simulated data set. Having comparable
setups allows us to contrast the real-life and simulated results and to determine
if our simulation has fundamental flaws.

5.4.3 Real-world data - Assen map

In order to verify our results, we compare them with a data set obtained from
one of our data-gathering experiments. During the Assen 2016 data-gathering
experiment we formed a group of four people and went in the festival area
carrying nine mobile devices, tablets and smartphones. We stayed as a group
and made multiple stops during several hours for each of the two days in which
we visited Assen and the festival area.

We made sure to record our movements both with a GPS tracker and by
taking notes in case of errors in the GPS data. These notes and the GPS data
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Figure 5.2: Assen map

serve as ground truth for our movements.

5.4.4 Simulating movements and detections

Using the two maps (grid and Assen city center) we generate two simulated
WiFi remote-positioning data sets. By using simulated data, we can control
factors such as packet loss or movement speed. It is not feasible to perform such
experiments in real life at a large scale.

Given a street map we generate the walking paths for 10 people. We assume
the individuals are randomly walking (a popular technique for simulating
human movement). To generate a path, we select a random position from the
street map and set it as the starting point. We then select a new position, more
than 300m away from the first, and have the individual take the shortest path
between the two points. The process is repeated until the simulation reaches
a predetermined end time, of 24 hours. We model stop and move periods for
intervals of one, resulting in 240 periods. The first hour is a moving interval,
followed by a stop hour, then, another moving interval, simulating in total 24
hours of data for each of the 10 people. When a stop period starts the individual
maintains its current position regardless if it reached its destination or not. The
movement speed is set to about 2m/s (walking speed). The specifics of these
simulations are similar to the simulation we generated for Chapter 4.

We record detections every second at the sensors that are in range of the
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device as given by the path that the individual carrying it takes. The sensors
are considered ideal, with a detection range of 50m, 100m and 150m (for the
main analysis we use 100m, the advertised range for WiFi devices) and with
a detection area in the shape of a disc. We chose a disc-shape in order to
circumvent random variation introduced by a more realistic, irregular detection
area.

The traces will have periods of one hour of constant movement, followed by
periods of one hour of stops. We take this set of one-hour periods and use it as
ground truth. Because the data is simulated, we can generate the ground truth
alongside the data set of detections.

5.5 Analysis

For our analysis, we compare and measure the effect of having different sensor
densities for crowd-dynamics monitoring platforms based on WiFi remote-
positioning systems. In order to have an unbiased comparison we need data
sets generated using different sensor densities that represent the same crowd-
dynamics phenomena. To build such data sets, we applied the procedure
presented in section 5.3 on the three original data sets presented in 5.4. This
procedure allows us to extract multiple data subsets from one WiFi remote-
positioning data set with fine control over the number of sensors that will be
included in the data subsets.

5.5.1 The effect of sensor density on move and stop labeling

For each of the three original data sets (simulated - grid map, simulated - Assen
map, real-world - Assen map) we extract data subsets with the number of
sensors k ranging from 1 to N. N is the number of sensors in the original data
set (100, 40 and 40 respectively).

For each number of selected sensors k (X-axis) we select 12 data subsets. The
12 data subsets are chosen using three sensor-selection criteria: 10 are randomly
selected, the other two are determined using the greedy algorithm in order to
obtain a lower and an upper bound. The selection criteria, and the reason for
choosing 12 subsets, have been described in detail in Section 5.3.

To compare the data subsets, we use the accuracy of correctly labeling
periods of stops and moves with a resolution of one second. In other words,
we compare the labels of each one second interval. Periods of stops and moves
can have different lengths. Because of this we use the F1 score, which balances
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precision and recall. This makes the F1 score sensitive even in scenarios where
one class dominates the data set. The F1 score is also the metric used for the
greedy algorithm in order to discover the lower and upper bounds.

The graphs in Figure 5.3 show how the variation in the number of sensors
(we maintain the same interest area, meaning the number of sensors is equiva-
lent to sensor density) affects the F1 score. The x-axis represents the number of
sensors contributing with detections to the data subsets. The y-axis represents
the F1 score obtained by comparing the stop and moves labeled by applying
the stay point detection algorithm on the data subset, with the ground truth.

Each of the figures represents comparisons based on different original data
sets. Figure 5.3a represents data subsets obtained from the simulated data
set using the grid map. Figure 5.3b represents data subsets obtained from
the simulated data set using the Assen city center map. Finally, Figure 5.3c
represents data subsets obtained from the real-world data gathered in the city
of Assen in 2016.

The upper bound is represented with a green line while the lower bound
is represented with a red one. Displaying a line for each of the 10 random
sensor selections would make the graphs unreadable. Instead, we display a
representative area with light and dark blue. Light blue determines the area
between the minimum and maximal F1 score values from the 10 randomly
selected data subsets. Dark blue is used to represent the area between the first
and third quantiles of the 10 F1 scores.

The analysis for all three original data sets shows similar correlations be-
tween the number of sensors and the F1 scores. The upper bound grows fast
and reaches a maximum given only few sensors. The lower bound grows close
to linearly with the number of sensors. The random selections start by growing
fast and then continue with a slower, almost linear growth, reaching the peak
only when all sensors are included.

The upper bound reaches maximum accuracy given data subsets with just
few sensors. The maximal value is reached with 10 sensors for the grid map and
5 for the Assen map. Adding data from more sensors no longer improves the
F1 scores. This means more data does not translate into new, or more accurate
information. More so, in the real data set, when we reach 30 selected sensors,
the F1 score value starts to drop slightly. This means that the data from some
sensors, combined with the data from the sensors that were already added
makes the algorithm identify movements during stop periods. This can be
explained by detections where the real distance between the device and the
sensor is exceedingly large. The position recorded for the device is far from
the real position, possibly making it seem like it moved. Furthermore, these
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(a) Grid map/simulated data
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(b) Assen map/simulated data
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(c) Assen map/real data

Figure 5.3: Accuracy of detecting stops and moves
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low-accuracy detections are common, and usually indistinguishable from the
others.

We calculated that 12-15 sensors per square kilometer is sufficient to extract
all available crowd dynamics information. We reached this value by comparing
the size of the interest area (0.81km2 and 0.33km2) with the minimal number of
sensors required to reach the maximum F1 score during our analysis (10 and 5).

The F1 scores for the real-world data set are much smaller compared to the
simulated ones. The differences can be attributed to lost frames and large peri-
ods between detections as well as low positioning accuracy given by irregular
detection areas. In contrast, the simulations assume frames are received every
second and the detection areas are perfect discs. Even so, with the maximal F1
score being much lower, the slopes for the real data set are akin to the ones we
obtained for our simulated data sets. Adding detections with low positioning
accuracy can make the algorithm incorrectly label stop periods as moves. The
stay point detection algorithm is not sensitive to low accuracy positions (in
our case, sensors need to be more than 220m apart to consider a movement),
however, if the distance between a sensor and the detected device is larger than
110m we can have mislabeling.

We argue that further increase in the number of sensors (beyond the values
represented in our analysis) would not bring any significant improvements of
the F1 score. We chose the maximum number of sensors for our analysis the
moment when we built our simulations and before we performed our data
gathering experiment. The values were chosen to obtain full coverage, with
considerable overlap between the sensing areas while maintaining a realistic
number of sensors. Sensors can be placed on buildings or light posts and these
have a set density.

It is possible, although unlikely, that a further increase in the number of
sensors can increase the F1 score. This seems especially true if we look at the
lower bound, which shows a linear growth. If we were to extrapolate from it,
we would conclude that we should have used a larger number of sensors for
our original data sets. However, for all three original data sets, the upper bound
remains constant between a relatively smaller number of sensors (10 and 5) and
all the way to the maximum number. This makes it unlikely that increasing the
number of sensors beyond the values of our analysis would provide data sets
for which we can do more accurate labeling and obtain higher values for the F1
score.

The lower bound grows almost linearly with the number of sensors. How-
ever, especially for the real data set, the F1 score can remain at 0 for as many
as 11 sensors. This means it is possible to place sensors in such a way that no



100 5 Sensor density and placement

movement is detected between them. This can happen for two reasons. Either
the sensors are too close, such that a move cannot be reliably distinguished
from a stop period. Or, the sensors are so far apart that no device is detected
by any two of them given a reasonable time frame (1 hour in our case). We
discovered in the previous chapter that labeling move periods longer than one
hour, having detections only at the start and end of the movement, lowers the
labeling accuracy.

Randomly selecting sensors results in data subsets that show a rapid growth
of the F1 score with few sensors. After the initial rise, as the number of sensors
increases the F1 score continues to grow, although at a slower pace. The blue
area, representing the F1 scores for our random samples is generally closer to
the upper bound. This shows that randomly placing sensors has a high chance
of providing data sets from which most of the common crowd-dynamics infor-
mation can be extracted. Furthermore, the small size of the blue area shows that
there is small variation given different sensor samplings and that the F1 score
values are affected more by the number of sensors rather than their placement.

The large difference between the upper and lower bounds, as well as the
distribution of F1 scores for the random sampling of sensors, shows that sensor
placement has a significant effect on the amount of information that can be
extracted, although, lower than the effect given by the number of sensors.
Randomly placing sensors can offer acceptable results. However, in all scenarios
peak accuracy is achieved with a far smaller number of sensors when they are
carefully selected (upper bound).

5.5.2 Comparing lower and upper bounds and the number of
detections per sensor

Because we use the greedy algorithm to determine the sensor selections for the
upper and lower bounds, these selections grow incrementally. The sensors for
the upper bound at k are included in the sensors selected at k+1. This means
that the lower and upper bounds are based on an ordered sets of sensors. If
each sensor adds a fixed amount of information, irrespective of the other sensors,
the ordered sets of sensors for the lower and upper bounds should be almost
mirrored.

Sensors can also be ordered by the number of detections. A correlation
between the ordering from the upper bound and that of the number of detections
would mean that the number of detections can be correlated to the amount of
extracted information.
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We can compare the ordinal association between two ordered sets using the
Kendall Tau distance [132]. The Kendall Tau, τ value is defined in Eq. 5.4, where
N is the number of sensors and xi represents the identifier of the i-th sensor
from one ordered set while yi represents the identifier of the i-th sensor from
the other ordered set. For Kendall Tau, a value of 1 would mean the ordered
sets are identical, a value of -1 would mean that they are mirrored, a value of 0
would mean there is no correlation between the orders in the two sets.

τ =
2

N(N−1) ∑
i< j

sgn(xi− x j)sgn(yi− x j) (5.4)

Using the Kendall Tau distance, we compare: the two ordered sets (from the
lower and upper bound) from each of our three original data sets; the upper
bound ordered set with the ordered set we obtain by arranging the sensors
increasingly by the number of detections. As a reference we use a comparison
between two random permutations of sensors. Figure 5.4 shows the Kendall
Tau values for these comparisons.
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Figure 5.4: Comparison of ordered sets of sensors

All the Kendall Tau values are close to 0, meaning there is no correlation
between the ordered sets of sensors, be it the upper/lower bounds sets, random,
or between the upper bound and the ordered set based on the number of
detections.

Finding no correlation suggests that we can have multiple, completely dis-
tinct ordered sets of sensors which offer similar results. When running the
greedy algorithm, sensors are chosen based on small differences. This happens
because the sensor detection areas overlap, meaning that two or more sensors
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record redundant data. Because of these redundancies, it is possible for two
different sets of sensors to offer the same information. Consider indexed sensors
placed in a line at small distances. Sensors placed on odd positions offer almost
the same information as those placed on even positions, although the two sets
have no sensor in common and the data sets have no detection in common.

5.5.3 Detection range

We know that the detection area of sensors is irregular and varies in time. With
many factors affecting detection range, including dynamics ones such as human
bodies or vehicles. As such, it is not feasible to simulate realistic detection areas.

Because we cannot accurately simulate it, sensing distance introduces the
main difference between our simulations and real-world data. We study the
effect that the sensing distance has on our analysis. To do this we simulated
data sets using three sensing distances: 50m, 100m and 150m. We used the
100m sensing distance data set in the previous subsection and for the rest of
our analysis. The three data sets are all created based on the grid map and they
represent the same movements. This way, we ensure we do not add any noise
because of randomness in movements.

For this comparison we calculated the upper and lower bounds of the F1
score of correctly labeling periods of stops and moves given the three sensing
distances. The results are presented in Figure 5.5.
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Figure 5.5: Grid map/Simulated - 50m, 100m, 150m comparison

Given few sensors, increasing the sensing distance to 150m increases the
accuracy of correctly labeling stops and moves. The improvement is not signif-
icant for the upper bound. However, for the lower bound, we can observe a
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large difference. The increase in accuracy is due to the larger coverage. Having
a larger sensing radius means that we can use fewer sensors to cover a larger
area, gather more data and more information.

The opposite is true when the sensing distance is lowered to 50m. The
accuracy of correctly labeling stops and moves is slightly lowered.

What we found interesting is that when we have a large detection radius
(150m) and the number of sensors is increased, the accuracy drops below the
maximum. This happens because we maintain the 220m threshold for the stay
point detection algorithm before we consider a movement. With the larger
range, the threshold is no longer sufficient. However, increasing the threshold
means some short moves can no longer be identified.

The differences introduced by changing the detection range are small and
the results from our analysis based on the simulations are on par with the results
for the real-world data set. Based on this, we consider that our simulations are
accurate enough to be used in order to address differences introduced by sensor
density and placement.

5.5.4 Unique detections versus accuracy of stop and move la-
beling

We are interested to know if the amount of information (represented through
the accuracy of labeling stops and moves) that can be extracted from WiFi
remote-positioning data, as we vary the number of sensors, can be explained
by features such as the number of detections per sensor. A strong correlation
between the two would translate in a requirement to obtain more positioning
data, in order to be able to extract more information.

In subsection 5.5.2 we have determined that the number of detections does
not correlate with the amount of information. We did not find a correlation
because neighboring sensors can record the same detections, becoming partially
redundant.

Instead of analyzing the raw number of detections per sensor we want to
extend our investigation to the number of unique detections. We know that
detections recorded at small intervals are recorded at nearby sensors because
human walking speed is low. Because of this, we can ignore spatial positions
and consider uniqueness only in regards with time.

Definition: We say a detection is unique if there is no other detection of the same
device, at any sensor, in a time interval that starts five minutes before the recording time
of the selected detection, and ends five minutes after. The set of unique detections
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ΛU is defined using equation 5.5. Here, λi represents a detection from the set
of detections Λ and λ T

i represents the time at which device λ D
i was detected.

Applying this rule to a set of detections in order to filter the set until it contains
only unique detections results in many random choices, based on the order
on which the rule is applied. The random choices make it difficult to use the
number of unique detections per sensor for our analysis as the numbers can
vary depending on chance.

ΛU = {∀i;λi ∈ Λ|@ j; i > j;λ
D
i = λ

D
j ; |λ T

i −λ
T
j |<= 300} (5.5)

The redundancy of detections can be used to represent the sensors as a graph,
where an edge represents how much redundancy there is between two sensors.
These graphs are akin to the sensor neighborhood graphs which we discussed in
Chapter 4. Because of the graph structure, there are many orderings of sensors
in which we can apply the uniqueness rule.

In order to compare the number of unique detections to the accuracy of
labeling stops and moves we apply the uniqueness rule using the sensor order
obtained by the greedy algorithm for the upper bound. Alternatively, we could
have chosen the lower bound. This means that we take all detections for the
first sensor, apply the uniqueness rule on them, then we add detections for the
next sensor, apply the uniqueness rule again, and so on until all data has been
processed.

In Figures 5.6 we plot the F1 score obtained for the upper bound along with
the percentage of unique detections as it varies with the number of sensors. To
reiterate, the percentage of unique detections is calculated incrementally based
on the ordered set of sensors for the upper bound.

The slope of the F1 score is similar to the slope of unique detections. This is
true for the three original data sets. However, there are differences. This means
that the number of unique detections is the main factor that determines the
amount of information that can be extracted from WiFi remote-positioning data,
but other factors exist.

In Figure 5.6c, for the real-world data set, we can observe that the percentage
of unique detections grows again after 17 sensors. We require only five sensors
to get almost maximum F1 score. The next 12 sensors add no new information
and no new unique detections. The number of unique detections does grow
given more than 17 sensors; however, the accuracy is not increased, meaning
the new unique detections have no positive effect on the accuracy or the amount
of information that can be extracted.

The similarity between the percentage of unique detections and the F1 score
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Figure 5.6: Upper bound vs unique detections
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shows the importance of gathering more data. This means that sensors should
be first placed in high density areas. Areas where a lot of people are expected,
such as shopping areas, stations, parks.

5.5.5 Placement of sensors

So far, we have determined that few sensors are sufficient to obtain high accuracy
of labeling stops and moves. Furthermore, we know that gathering more unique
positioning data is beneficial.

We want to determine what makes “good” and “bad” sensor placements.
The first sensors in the upper bound ordered set have “good” positions because
they contribute the most to increasing the accuracy of correctly labeling stops
and moves. In contrast, the first sensors for the lower bound ordered set are
specifically selected to bring the lowest accuracy.

We extracted the first 10% of sensors from the upper and lower bound
ordered sets. We marked the “good” sensors (first 10% of upper bound) with
green and the “bad” (first 10 % of lower bound) with red on the sensor maps in
Figures 5.7, 5.8 and 5.9.

We observed that it is possible for a sensor to be both in the first 10% from
the upper bound and 10% from the lower bound. We labeled these sensors
with black. These sensors belong in both groups due to the overlap between
detections. When the greedy algorithm is used for the upper bound, these
sensors are far from the others, meaning they add unique detections and new
information. In the case of the lower bound, they are clustered together with
other “bad” sensors, meaning they provide redundant detections and no new
information. Having the sensors be “good” or “bad” based on their relationship
and small variations explains why the ordered sets from the upper and lower
bound are not mirrored and why the Kendall Tau distances between them are
close to 0.

From all maps, we can observe that the best practice is to spread the sensors
and make sure they cover as much area as possible. This re-enforces the rule
that coverage should be the primary factor when deploying a crowd-sensing
platform.

Figure 5.9 is the only case where “good” sensors are placed close to each
other: the two green sensors to the north-east. In that case, the two sensors are
near a main stage, which had a lot of traffic, but more importantly, each of the
sensors covers a different high-traffic street. This means that, the two sensors
have a large number of detections that are not redundant.
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Figure 5.7: Grid map/Simulated (Good sensors green, Bad sensors red, black for both

In all cases the “bad” sensors are packed together, usually in an area of low
traffic, such as the corner in the grid map. In the real world, the “bad” sensors
are packed in an area with no stages and, as such, with few people and low
traffic.

These results reinforce the idea that it is important to spread the sensors
while prioritizing high-traffic areas. This ensures the gathering of the highest
amount of unique data and information with the smallest number of sensors.

5.6 Summary

In this chapter we studied the effects that the number and position of sensors
have on the data gathered using a WiFi remote-positioning system. Data sets
are more useful depending on the amount of information that can be extracted
from them. We measured how much information can be extracted from a data
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Figure 5.8: Assen map/Simulated (Good sensors green, Bad sensors red, black for both)

Figure 5.9: Assen map/Real (Good sensors green, Bad sensors red, black for both)

set using the accuracy to correctly label periods of stops and moves.
Our analysis has revealed that using only few sensors, we can extract the

same amount of information as we would with many more sensors. This
means that we cannot improve the performance of WiFi remote-positioning
systems by adding more sensors.

We have determined how the number and position of sensors contribute
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to obtaining data sets from which we can extract the most crowd-dynamics
information. We propose the following scheme for sensor placement:

1. Determine the high-traffic areas using other methods. High-traffic areas
offer the highest amount of data and are likely to provide most unique
detections. Our analysis showed that the number of unique detections is
a main factor in increasing the amount of information.

2. Place one sensor in each high-traffic location, while avoiding overlaps.
Overlaps create redundant data. This makes a sensor placed near an
existing one less important than one placed far away.

3. Place sensors so that they jointly cover as much of the interest area as
possible (preferably at least 12-15 sensors per square kilometer - assum-
ing close to 100m detection range). In all three of the data sets which we
analyzed, we reached peak accuracy with as few as 12-15 sensors per
square kilometer (see Figure 5.3c). This is achieved under the assumption
that the sensors are spread to cover as much of the area as possible.

4. If a higher number of sensors can be used, consider increasing the in-
terest area or add more to high-traffic areas. Due to the low probability
of recording WiFi frames, having redundant sensors means more unique
data can be gathered from the same area. We know the probability of
detection is lowered even more in high-traffic areas because our bodies
block the WiFi signals.

We believe that these results can easily be transferred to other system that
use radio sensors for positioning. Our results and our guidelines make crowd-
dynamics monitoring platforms more accessible by lowering the financial
costs of a deployment. This can be done because we showed most information
can be extracted using few sensors.
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CHAPTER 6

Sensing Scans versus Connections

Many WiFi remote-positioning implementations record Probe Request frames
and nothing else. The assumption is that Probe Request frames are almost
always sent. Even when a device is connected to a network, it must send Probe
Request frames in order to do roaming and be able to connect to the access
points with stronger signals.

We want to test if this assumption is true and if Probe Request frames
are enough to represent the total of crowd-dynamics information that can be
extracted using WiFi remote positioning. To do this we compare a WiFi remote-
positioning data set obtained by recording Probe Requests with one obtained
by logging the connection status of devices.

6.1 Contributions

WiFi remote-positioning data sets can be built by recording 802.11 frames. It
is common, for the WiFi remote-positioning platforms, to filter frames that are
not Probe Request frames. The assumption is that Probe Request frames are
always broadcast by mobile devices, even though the frequency might vary.
When a device is connected, these frames are broadcast in order to search for
better access points. This process of moving from one access point to another is
called roaming.

Another way of collecting positioning data from WiFi, while maintaining
the same privacy guarantees as with the Probe Request frames, is by using
connection logs. Connection logs are kept by most large WiFi network opera-
tors (such as Eduroam). We have performed a data-gathering experiment that
collects both Probe Request frames and logs connection status of mobile de-
vices from the same set of sensors. Because we use the same set of sensors
and perform data gathering simultaneously from all of them, the two data sets
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describe the same crowd dynamics. We can compare these two data sets to
better understand how much information on the crowd dynamics is shared and
how much is complementary.

We know that the Probe Request data set contains information on more
devices, compared to data sets formed of connection logs, because we cannot
expect all devices that move through our sensing area to connect to the sensors’
network. After excluding these extra devices from the Probe Request data set,
the assumption would be that because the two data sets measure the presence
of devices in the same area over the same time, they would offer the same
information. If this was the case, and the number of devices detected only
through recording Probe Requests would be insignificant, the choice of method
would depend only on convenience.

Having the two data sets we measure to what extent they can be correlated
based on time, space and information, in the form of the summary of stops
and moves. We conduct the comparison in order to determine if the assumption
that the data sets offer similar information is true.

After determining the validity of the previous assumption, we explore the
possibility of joining the two data sets in order to obtain a more complete
picture of crowd dynamics. We compare the data set obtained after merg-
ing with the original ones and present the results in terms of the amount of
information that can be extracted.

6.2 Fundamentals

There are many crowd-dynamics monitoring platforms based on WiFi remote-
positioning used for commercial deployments or research projects that record
only Probe Request frames [66, 68, 72, 79, 90, 133, 134, 135, 136], although WiFi
communication uses many other frame types. We presented these frame types
and the details of the 802.11 protocol family in Chapter 2.

Recording all frame types is avoided because it raises serious privacy con-
cerns. While Probe Request frames (PR) contain little personal data, such as
the MAC of the device and SSIDs of networks it connected to in the past, other
frames may contain sensitive data, such as clear text data for unencrypted con-
nections. Due to the privacy concerns in all our data-gathering experiments
we limited ourselves to capturing only frame types that do not contain any
sensitive data, mostly limiting ourselves to Probe Request frames.

Recording too much meta-data incurs privacy risks due to the possibility
of using meta-data to deanonymize the device owners. This is shown in dif-
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ferent works [98, 137, 138, 139, 140], where the authors found it is possible to
deanonymize devices, even when they use MAC address randomization. In
practice, we found that the recorded data is sparse enough to limit such at-
tempts. However, we limit our data gathering to what is absolutely necessary
in order to achieve positioning of many anonymous individuals while at the
same time ensuring that individuals cannot be identified otherwise.

A privacy-sensitive alternative to capturing Probe Request frames for WiFi
remote positioning is to use connection logs. In most large networks, connection
logs are recorded to keep track as to when users connect to the network as
well as the identifier of the access point they connect to. Having the device
identifier, a time stamp and access-point identifier, makes connection log entries
equivalent to detections, as we described them in Chapter 2. In order to form a
connection, the first step a mobile device needs to take is to start an association,
by sending an Association Request frame. Because of this, we call data sets
obtained from connection logs, Associations (AS) data sets.

Recording only Probe Request frames is popular because of the assumption
that they are transmitted with some regularity. WiFi communication is gener-
ally done after a device is connected to a WiFi network, composed of one or
multiple access points. Access points broadcast Beacon frames to advertise their
availability, and mobile devices can passively scan for the Beacon frames and
connect when a Beacon from a known network is received. The 802.11 standard
specifies that devices send Probe Request frames in a process called active scan-
ning. When actively scanning, the mobile device searches for access points. This
enables connections to networks that do not advertise their availability through
Beacon frames and in some cases increases connection speed.

When a device is connected to a network it may continue to actively scan in
order to find an access point for the same network but having a stronger signal.
Moving from one access point to another of the same network is called roaming.
Knowing that active scans can be done even when a device is connected, one
can assume that by recording Probe Request frames a device would be detected
regardless of its connection state.

The 802.11 standard specifies only that a device can scan, it does not specify
when this needs to be done. This decision is left to the operating system and
the device manufacturer. Various mobile devices have different rules regarding
scanning that depend on the way in which they are used. For instance, laptops
are usually turned off or are in standby mode while being transported, and
as such cannot actively scan for WiFi networks. Energy saving consideration
creates other strict rules of when to actively scan. However, some installed
apps that require internet connection can ask the operating system to scan more
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Figure 6.1: Twente Sensor Placement (spots are the sensors, circle is 100m visual guide,
squares are sensor groups)

frequently.
We argue that logging connections implies having stronger detections, with

a higher positioning accuracy, as devices cannot make and keep connections
while near the edge of the area where signals can be correctly received. Building
a connection requires complex communication which can only be done if the
signals between the mobile device and access point can be correctly received
for extended time periods. Furthermore, when communicating, devices need to
use their real MAC and send data periodically in order to keep the connection
alive. This means that positioning data sets based on connection logs do not
contain detections with random MACs and have regular frequencies.

Positioning data sets obtained from Probe Request frames (PR) and those
obtained from connection logs, or associations (AS), have different characteris-
tics. PR detections cover more time because they can be recorded even when a
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device is not connected but they are highly irregular and offer low positioning
accuracy. AS detections are available only when a device is connected but are
more regular and have a higher positioning accuracy.

In order to compare PR and AS positioning data sets, we conducted the
Twente data-gathering experiment. The two data sets (PR and AS) have position-
ing data covering the same time period and the same area. The data is gathered
by logging connections at a six-minute interval and by sensing and recording
Probe Request frames received by the same set of sensors. We gathered WiFi
remote-positioning data for three days.

During the Twente data-gathering experiment, the sensors were placed
as presented in Figure 6.1. We colored the sensor locations by varying the
red color with the latitude and the green with the longitude. Because of this,
sensors that are close have similar colors and the ones that are far have different
colors. The same color mapping scheme is used later in order to visualize
the positioning data. We also grouped the sensors manually, by using our
knowledge of the areas (student housing, social and shops, faculty). Each sensor
group is surrounded by a square.

6.3 Comparing Probe Requests with Associations

Comparing data sets gathered by recording Probe Request frames (PR) and
by using connection logs (AS) is vital. Determining that the two data sets
offer different information means that crowd-dynamics measurements using
WiFi remote positioning should aim to use both. In contrast, if they offer the
same information, we would know that only one of the data sets needs to be
gathered. The choice can be made based on convenience. Of course, there is the
third possibility, that the data sets are partially similar. In this case we need to
determine what percentage of the two data sets is common and what differs.

In order to conduct the comparison, we have identified three criteria based
on time, space and a final one, based on information, that combines the two.
These choices cover all the properties of the data sets:

• Temporal comparison - when are the detections recorded and for which
devices

• Spatial comparison - where are the detections recorded

• Information comparison - what information can be extracted, or in other
words, what moves, and what stops are described by the positions
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6.3.1 Temporal comparison

To make a temporal comparison we take each detection from one of the data
sets and try to find a corresponding one in the other data set. For a detection in
one data set to correspond to a detection in another, the two detections must be
of the same device and match temporally according to a threshold. For now, we
ignore the position or the sensor that recorded the detection.

The two data sets have different detection frequencies (6 minutes for AS
data set and irregular - from seconds to tens of minutes - for PR data set) and
the recording process itself can introduce synchronization differences of a few
seconds. Because of this, we decided to say two detections are correspondent if
there are less than 3 minutes between them. We chose 3 minutes because it is half
the time period between AS detections. If the value was smaller, we would have
PR detections between two consecutive AS detections, with no correspondent. If
the value was larger, we would have PR detections with multiple AS detection
correspondents, possibly creating a chain of corresponding detections. As
such, it is guaranteed that each PR detection would have at most one AS
detection correspondent. One AS detection can have multiple PR detection
correspondents because of the higher frequency.

To summarise, we say a detection λi from the detection set of probe requests
ΛPR is correspondent with a detection λ j from the detection set of associations
ΛAS if they represent the same device λ D and are recorded at times λT less than
3 minutes from each other. Correspondence is formally described in Equation
6.1.

λi ≈ λ j↔ λi ∈ ΛPR;λ j ∈ ΛAS;λ
D
i = λ

D
j ; |λ T

i −λ
T
j |< 180s (6.1)

To better understand the similarity of detections, we split corresponding
detections into three categories: at the same sensor, at sensors that are less than
400m away, and at sensors that are more than 400m away. We chose the distance
to be 400m, as it would represent the case where three sensors are placed in
a row, each with a sensing radius of 100m. Considering each AS detection
can correspond to multiple PR detections, for each AS detection, we select
the correspondent that has the smallest geographical distance. Corresponding
detections at the same sensor can be considered identical while corresponding
detections at more than 400m can be considered invalid. This is because we
expect the distance between detections recorded at similar times to be small.

The first column in Figure 6.2a, labeled with Original, represents what
percentage of detections from the data sets are correspondent and if they are,
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what is the distance between the locations where those detections were recorded.
The colors used in the graphs are:

• dark green - perfect match - at least one correspondent detection at the
same sensor.

• yellow - partial match - at least one correspondent detection at less than
400m, but no correspondent detection at the same sensor.

• red - mismatch - at least one correspondent detection at more than 400m,
and no correspondent detection at less than 400m.

• orange - no correspondent detection.

Consider one detection from the AS data set. If there is no detection in the
PR data set of the same device, within three minutes from it, we say it does not
have a correspondent and label it with orange. If it does have a correspondent,
we find the corresponding detection in the PR data set which is recorded at a
sensor closest to the one that recorded the AS detection. Based on the distance,
we label the AS detection as correspondent, matching, partially matching or
mismatching, with detections from the PR data set. The same is done when
considering detections from the PR data set.

In Figure 6.2b, for the first column, labeled Original, we compare devices
by the same criteria. We chose the label color of each device as the one for its
best matching detection, in the order from the previous list. We do this because
we know most devices have non-correspondent or mismatching detections,
based on the percentage presented in Figure 6.2a. This allows us to gain some
insight into how many devices have at least part of detections matching or
correspondent.

By analyzing the columns labeled Original from both Figures 6.2 we observe
that the two data sets are extremely different. Most detections do not have
correspondents. Furthermore, many devices, especially in the PR data set, do
not have even a single corresponding detection.

The data sets consist of 16 million probe request (PR) detections and 150
thousand association (AS) detections. These detections have over 2 million
distinct device identifiers (salted hash MAC addresses) in the PR data set and
26 thousand device identifiers in the AS data set. Detecting 2 million devices is
not realistic considering the entire population of Enschede (the city that hosts
the Twente University campus) is 150 thousand people and we are recording
detections only in the area of the University campus.
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Figure 6.2: Comparing and filtering the PR and AS data sets. (dark green - match;
orange - no correspondent; yellow - partial match; red - mismatch; light green - filtering)
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The large differences between the two data sets may be explained by the
large number of detections that have attached device identifiers which are
constructed given random MAC addresses. Furthermore, some devices may be
detected only through one method, or devices might be detected at different
times given different methods. We have explained the problems introduced by
using random MAC addresses in previous chapters.

For the AS data set, the number of device identifiers is much more realistic.
This is because devices need to use a real, unique MAC address when communi-
cating over a WiFi network. In our case, the WiFi network is the one providing
WiFi to the University staff, students and guests, called Eduroam.

We know that the number of devices identified through Probe Requests must
be larger than the number of devices identified through Associations. This is
because everyone who visits the campus and does not connect to the Eduroam
network would be present only in the PR data set. Nevertheless, the numbers
should be within a reasonable range from each other.

In order to have a more realistic analysis we propose comparing the data sets
after filtering out detections that have no chance of having correspondents or to
match. For this we apply four filters. Figures 6.2 show how the comparison that
we described earlier changes after applying each of the filters. The light green
transition shows the effect of each filter. The filters are set in the presented order
because after each we gain specific insights about the two data sets. Next, we
describe each of the four filters and their effect in detail.

6.3.1.1 Filter 1

Finding the real number of devices detected through Probe Requests is im-
portant to understanding the scale that WiFi remote-positioning systems can
achieve. We cannot build traces if the devices are using random MAC addresses
that are constantly changing. Furthermore, in order to gain a real sense of the
difference between the two methods (AS and PR) we need to know the real
number of devices detected by each. If it were true that by using PR we could
identify 2 million devices compared to 26 thousand in AS, as is apparent in the
first column from Figure 6.2b, this would be a strong argument against using
AS, because it would offer considerably less information compared to the PR
method.

Using standard approaches, such as outlier detection, to remove data recorded
with random MAC addresses is not possible because the device identifiers based
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on these addresses dominate our data set. IANA 1 has set aside a group of OUIs
(first part of the MAC address) that should be used by devices that randomize
their MAC address when scanning [141]. This makes it simple to remove detec-
tions that belong to random MAC addresses. However, there is no guarantee
that only these OUIs are used to form random MAC addresses. Furthermore,
due to privacy reasons we do not save the original MAC address, but a salted
hash. Without the clear text MAC address, we cannot filter the random ones
based on OUI.

By analyzing the data sets, we observed that most of the two million devices
have one or few detections. This is consistent with the use of random MAC
addresses that change often. If random MAC addresses would not change often,
the privacy guarantees that they introduce would not work, as the device could
be tracked. The multitude of device identifiers with few detections led us to
conclude that because of the large number of available random MAC addresses,
for each random MAC address there are only few detections, possibly even just
one. This means that it may be possible to find a threshold, so that if there are
fewer detections than the threshold for a given device identifier, it is likely to be
based on a random MAC address.

We know such a threshold cannot perfectly differentiate between device
identifiers based on random MAC addresses and real ones. It is possible for a
real device to be detected only once, as such, the threshold would erroneously
label its device identifier as one based on a random MAC address. Even worse,
due to chance, a random MAC address may be detected more times than a given
threshold. Considering no other method is available to differentiate between
device identifiers based on real and random MAC addresses, due to privacy
considerations, we believe using a threshold offers an acceptable estimate.

The next filter, Filter 2, removes all detections with device identifiers that
can be found in only one of the two data sets. This means that it also removes
all detections for device identifiers of random MAC addresses. This happens
because the AS data set cannot have device identifiers based on random MAC
address.

Considering the threshold offers only an estimate, we could ignore Filter 1
and just use Filter 2. However, by applying Filter 1 we discover realistic number
of devices that can be detected by either method. Comparing these values is
important in order to understand how many more devices can be detected
by recording Probe Request frames, even though they never connect to the

1IANA: Internet Assigned Numbers Authority https://www.iana.org/ (Accessed: 01-July-
2019)

https://www.iana.org/
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Eduroam network.
We propose a technique for determining the threshold based on the median

number of detections per device. Our thinking is that comparable data sets (same
time frame, same area, same gathering technique) that record real MAC addresses have
the same median number of detections per device. We use median instead of the
mean because it is less sensitive to outliers. We know that device identifiers
from the PR data set that are also present in the AS data set are based on real
MAC addresses. These represent a part of PR device identifiers based on real
MAC addresses, but there may potentially be others. Having this information,
of a set of device identifiers we know to be based on real MAC addresses, allows
us to split the PR data set into a part that has only device identifiers from real
MAC addresses and one that has both real and random MAC addresses. We
can then filter the one that contains random MAC addresses until we obtain
the same median number of detections per device as in the other. The values
calculated using the technique are presented in Figure 6.3 and the step by step
details are:

• We split the PR data set in two: one would contain detections for all device
identifiers that can also be found in the AS data set (PRD ∈ ASD); the other
would contain the remaining detections (PRD /∈ ASD). We do this because
we know that device identifiers based on random MAC addresses can be
found only among device identifiers that are not present in the AS data
set.

• We calculate the median number of detections per device identifier in the
PRD ∈ ASD data subset. This number is used as a reference. For our data
set, the median number of detections per device in PRD ∈ ASD was 107
and this is represented using a red line in Figure 6.3.

• We filter detections from the PRD /∈ ASD data set that have a device identi-
fier for which there are fewer detections than a given threshold. We use
all values for the threshold between 0 and 300. We chose not to go beyond
300 as it is a reasonably high number of detections per device identifier
based on our experience with the data sets.

• By filtering we obtain 300 data subsets. For each of these data subsets
we calculate the median of the number of detections per device identifier.
This is shown with blue squares in Figure 6.3.

• We compare the 300 median values with the median number of detections
per device calculated based on the filtered PRD ∈ ASD data sets (the 107
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value calculated earlier, represented by a red line in Figure 6.3). The
threshold used for Filter 1 is the one that makes the median value from
PRD /∈ ASD equal to the one in PRD ∈ ASD.

As can be observed in Figure 6.3, marked with a horizontal dashed line, the
threshold value obtained through this method is 39. This means that a device
identifier for which we have fewer than 39 detections is considered a device
identifier based on a random MAC address. All detections we have recorded
with the given device identifiers are removed by filter 1. We apply the filter only
for device identifiers that do not have detections in the AS data set.
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Figure 6.3: Determining threshold for removing data for
device identifiers (alias D.id) with few detections

red line - median detections per D.id for PR data subset where the D.id is in AS data set

To confirm our choice of threshold value we used another technique. We
calculated the slope of the median of the number of detections per device
depending on the threshold (green in Figure 6.3). The knee of the slope is
near the threshold value of 39. To the left of the knee the change in median is
large, to the right the median values stabilize. This can be explained because
most detections, those belonging to random MAC addresses, have already been
removed.

Filter 1 removes detections only from the PR data set. To formalize, we use
Equation 6.2 to select detections that are to be filtered. Here |ΛPR[λ

D
i ]| is the

number of PR detections belonging to device λ D
i .

f ilteredDetections = {λi ∈ ΛPR||ΛPR[λ
D
i ]|< 39} (6.2)
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Going back to Figures 6.2, after we apply filter 1 with the threshold set to
39, more than 2 million devices jointly having 5 million detections are removed.
This filter affects only non-corresponding detections, the orange part of the PR
data set, removing part of them (the start of light green transition).

We are left with 43 thousand device identifiers in the PR data set. This
number is much closer to the number of identifiers in the AS data set, 26
thousand. Because the numbers of devices are now reasonably close to each
other, we claim that the chosen threshold offers a good estimate.

After applying filter 1 we discovered that the PR data set contains detections
for about 65% more devices compared to the AS data set. This is evident in
the second column from Figure 6.2. Considering the campus environment and
that students and staff have access to the Eduroam network, it is reasonable
to assume that about 40-50% of devices do not connect to the network. These
devices can belong to guests or be secondary devices for some of the students.
Devices that were never configured to connect to the Eduroam network.

What is interesting is that even though a third of the detections were re-
moved, the percentage of detections with corresponding detections in the other
data set remains low. This motivates our use of the other three filters.

We estimate that the detections removed by filter 1 represent somewhere
around 20 thousand devices. We arrived at this value by dividing the number
of filtered detections by the average number of detections per device for the
ones that are left. Many of these detections may be of devices that are detected
in the AS data set, when using the real MAC address.

6.3.1.2 Filter 2

Filter 2 removes all detections for device identifiers that are found in only one of
the two data sets. So far, we discovered that the PR data set contains detections
for significantly more devices, but we are interested to learn how the data sets
compare for those devices detected by both methods.

To formalize, the detections λi that are filtered from the PR data set are
represented by the set from Equation 6.3. An equivalent equation represents
the set of detections that are removed from the AS data set.

f ilteredDetections = {λi ∈ ΛPR|@λ j ∈ ΛAS;λ
D
i = λ

D
j } (6.3)

When applying filter 2 we discovered that from the 26 thousand devices
connected to the Eduroam network only 133 do not have a detection in the
PR data set. That amounts to 0.5% of devices in the AS data set. Considering
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almost all devices from the AS data set are present in the PR data set, this shows
that most, if not all, devices send Probe Requests with the real MAC, even if
they use MAC address randomization.

We show the distribution of matching detections after applying filter 2 in the
3rd columns from Figures 6.2. The percentages for the AS data set remain almost
unchanged, because we removed detections for only 133 devices. However, the
PR percentage of matching detections grows noticeably as detections for many
devices found only in the PR data set are filtered.

6.3.1.3 Filter 3

The small percentage of matches after applying filter 2 can be explained by
devices being detected at different times given the two methods. Consider the
following scenario: one device is detected using PR in the morning and AS at
night. It is obvious that if we compare the traces of the device, they are different
because they represent different time periods. We are interested to perform
the comparison on the time period where devices are detected through both
methods.

Filter 3 removes all detections that do not belong to the time period in which
both methods detect the device. The time periods are calculated for each device
independently. We want the time period to start at the latest of the first two
detections from the PR and AS traces, and end at the earliest of the last two
detections from the PR and AS traces. To formalize, the time period for a device
d starts at startTimed calculated using 6.4 and finishes at endTimed calculated
using 6.5. Detections are filtered using Equation 6.6.

startTimed = max(min(ΛAS[d]T ),min(ΛPR[d]T ))) (6.4)

endTimed = min(max(ΛAS[d]T ),max(ΛPR[d]T ))) (6.5)

f ilteredDetections = {λi ∈ Λ[d]|λ T
i < startTimed ∨ endTimed < λ

T
i } (6.6)

To better understand filter 3 we use Figure 6.4. Given the sets of detections
(AS and PR) for a device, ordered from left to right by time as we can see in
subfigure (a), we select the first and last detection from each data set, subfigure
(b). From the four detections we select the latest from the first and earliest from
the last, subfigure (c). Finally, we filter all detections that are not between the
two timestamps chosen earlier, subfigure (d). It is possible for the two sets of
detections to not have anything in common, subfigure (e), or for all detections
from one data set to be between all detections from the other, see subfigure (f).
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In the last case, our filter would remove all detections for the device from one
of the two data sets and leave all in the other.
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Figure 6.4: Filtering on common time interval

After we apply filter 3 we can observe a noticeable increase in the number
of matching detections, in the 4th column from Figure 6.2a. When we analyze
the numbers of devices, we observe that, for both data sets, they dropped signif-
icantly, from 26 thousand, to 20 thousand in the AS data set and 12 thousand
in the PR data set. This shows that for many devices, the two methods gather
detections in significantly different time periods.

6.3.1.4 Filter 4

After we apply Filter 3 and remove detections that are not part of the common
interval, we are left with different number of devices in the two data sets.
Because of this, we apply Filter 4. Filter 4 is identical to Filter 2, removing
devices that are found in one of the data sets but not the other.

After applying filter 4 we are left with data sets of 12 thousand devices.
These 12 thousand devices are represented through 2 million detections in the
PR data set as well as 105 thousand detections in the AS data set.

The percentage of detections for which we have no correspondent or for
which we have mismatches remains high. This is made evident in the last
column from Figure 6.2a. Having a high percentage of detections with no
correspondent is surprising, considering that after applying the four filters we
removed 30% of detections from AS data set and 86% of detections from the PR
data set and all detections removed were non-correspondent.
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For devices, in Figure 6.2b, the percentage of them with no correspondent
detection is significant. The percentage of non-corresponding or mismatching
devices is large, especially considering that we labeled devices based on their
best matching detection.

The large amount of data removed by our filters and the differences obtained
even after filtering so many detections shows us that the PR and AS data sets
are very different, at least when it comes to the recording time of the detections.
With such large differences we are inclined to believe the two data sets are more
complementary as opposed to similar.

6.3.2 Spatial Comparison

In the previous subsection we compared the two data sets from a temporal
perspective. We filtered the original data sets so that we were left with detections
in periods where both methods detect the devices. For the spatial comparison,
we use the data sets obtained after applying the four filters. The filtered data is
not as interesting from a spatial comparison standpoint because it is obvious
that if they are detected at completely different times devices can be in different
locations.

For the spatial comparison, we take all detections for a device and compare
the areas where it is detected. The thinking being that a device should be
detected in the same general area by both methods.

We conduct the spatial comparison using two measures, the center of mass
of all detections for a device and the radius of gyration. The center of mass

−→
Rd

for a device d is defined using Equation 6.7, where Λ[d] is the set of detections

for device d and
−→
λ P is a vector representing the geographical position of the

sensor (latitude and longitude) at which a detection was recorded. The radius of
gyration,

−→
Gd , as is defined in Equation 6.8, is used in previous works on human

movement [142, 143, 1, 144]. The radius of gyration acts like a form of standard
deviation of how far the detections are recorded compared to the center of mass.
The radius of gyration shows how mobile a device is.

−→
Rd =

1
|Λ[d]| ∑

λi∈Λ[d]

−→
λ

P
i (6.7)

−→
Gd =

√
1
|Λ[d]| ∑

λi∈Λ[d]
(
−→
λ

P
i −
−→
Rd)2 (6.8)
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For each device we measure the distance between the two centers of mass
(one from each data set). We plotted a histogram of all these distances in Figure
6.5. Many distances are equal to 0, meaning these devices are detected at the
same location. However, most devices have positive distances between the
centers of mass, reaching even 1km. This means the two data sets show the
device in significantly different places. This emphasizes the difference between
the two data sets, as not only a temporal one, but also a spatial one.
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Figure 6.5: Distance between centers of mass (Few centers of mass match - 0m distance)

We compare the radius of gyration for each device (as it results from the
two data sets). Figure 6.6 is a 2D histogram showing how many devices have a
radius of gyration calculated based on the AS data set (x-axis) and a different
one given the PR data set (y-axis). From the figure we can observe that all values
are small, meaning the devices have low mobility. We have many cases where
devices appear mobile given one data set and static given the other. More so,
this characteristic is symmetric, meaning there isn’t one data set which generally
shows more mobility.

Given the differences between the centers of mass and radius of gyration as
they are calculated for each device given the two data sets, we conclude that
the two methods (AS and PR) detect the devices in noticeably different areas
and with different mobility. This supports the idea that most devices, when
connected to a network, no longer scan for other access points in order to do
roaming. As far as we know, we are the first to test and conclude this.
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Figure 6.6: Comparing Radius of Gyration

6.3.3 Information Comparison

For our final comparison, we investigate what information can be extracted
from detections. Information is best described through the summary of stops
and moves. To have a more comprehensive analysis we want to compare
not only stops and moves, but also what sensors detect the devices. All the
comparisons are presented in Figure 6.7. Next, we go through each and describe
the comparison in detail:

• Dev (Sensors). For each device we can extract a set of sensors that detect
it. We compare the two sets of sensors (one from the AS data set and one
from the PR one). The first column from Figure 6.7 shows the comparison
between these sensor sets. Green represents the devices that have all the
sensors from one data set present in the other data set. Yellow represents
the devices for which only a part of sensors from one data set are present in
the other. Finally, orange represents devices for which the sets of sensors
that detect them into the two data sets do not have any sensor in common.

The AS data set has more devices in the green area. This is because the PR
data set has more detections at more sensors, making it more likely that
some of the sensors that recorded detections of the device in the PR data
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Figure 6.7: Information Comparison

set did not record any in the AS one. We were surprised to see a small, yet
significant part of devices that are detected by completely different sensors
given the two methods (the orange parts in the AS and PR columns).

• Dev (Sensor Group). It is possible that a lot of differences appear because
devices are randomly detected by one of two nearby sensors. To mitigate
this we group sensors as we proposed in Figure 6.1. After grouping the
sensors, the percentage of devices that are detected by the same sensor
groups or by similar ones grows significantly. This can be observed in the
second column from Figure 6.7. Yet, there are still some that are detected
by completely different sensor groups.

• Movements. For the final two columns we analyze stops and moves as
was presented in Chapter 4. We set the values of the Stay Point Detection
algorithm to be: 220m distance between sensors before we consider a
move; minStayDuration of 1200, meaning we are not interested in stop
periods that are shorter than 20 minutes; and maxMovementDuration of
3600 meaning that for us to consider a movement between two consecutive
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detections, the detections must have taken place within an hour. These
values were the ones for which we obtained the best results in Chapter 4,
where we analyzed stop and move algorithms.

In Figure 6.7 we marked with green all movements of the same device
that have similar (within 5 minutes) start and end times in the two data
sets. With yellow we mark movements of the same device that start and
end in the same sensor group. For the last column, we take all moves from
a device within one data set and overlap them with all moves from the
other data set. The percentage of matching overlap times are added and
marked with dark green. The non-overlapping intervals are marked with
orange. A few examples of how move periods can overlap are presented
in Figure 6.8.
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Figure 6.8: Examples of finding common time for moves
(green - matching; red - not matching)

Because the difference between the two data sets is so large, we conclude
that a best practice would be to merge the two data sets in order to obtain a
more complete picture.

6.4 Merging the Probe Requests and Associations
data sets

Based on the previous comparisons we know that the two data sets are mostly
complementary. If we were to merge the two data sets, we would have more
detections, over more time, covering more space and offering more information.
This implies that in a real deployment one would need to record both Probe
Requests and connections to obtain a more complete picture.
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We are interested in merging the data sets after the four filters have been
applied. The part of the data set presented in the last column of Figure 6.2. The
filtered parts from the data sets can be merged, but the results of the merger
are obvious and offer no new information. This is because the differences are
significant enough so that processing the data set obtained by merging the
filtered parts would be identical to processing them separately.

To compare the merged data set with the original ones we count the number
of moves obtained by running the stop and move algorithm on the separate
data sets (AS/PR) and after running it on the merged data set (AS+PR). The
results are presented in the first two columns from Figure 6.9.
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From the merged data set we can extract more moves compared to the sum
of moves extracted from the two original data sets separately (see Equation 6.9).
Here, moves() represents the stop and move extraction algorithm. The extra
moves appear in circumstances where the move starts with a PR detection and
ends with an AS one, or the other way around. On the other hand, a small
percentage of moves are discovered from the detections generated by both
methods. These would in turn lower the number of moves in the merge data
set (AS+PR). Equation 6.9 is true given our measurements because the number
of matching moves is much smaller than the number of moves added after the
merge. There is no guarantee that this is true for all data sets.

|moves(AS)|+ |moves(PR)| ≤ |moves(AS+PR)| (6.9)
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The last two columns of Figure 6.9 show that the same happens when we
look at devices. When we merge the data set, we obtain moves for devices that
had no moves in any of the two data sets. For these columns, orange is used
to represent devices that have moves in both data sets. Here we can observe
the high percentage of devices that have moves in only one of the two data sets,
with blue and yellow.
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Figure 6.10: Histogram on the number of moves per device

To better understand the effect of merging the data sets before applying the
stop and move algorithm we created the histogram shown in Figure 6.10. This
histogram shows the number of moves per device depending on the data set
used to generate the moves. Here, we can observe that for the AS data set most
devices have no moves and those that do, have only one, rarely more. This
makes sense considering connections are usually made when we stopped, and
we do not visit many distant places during a day.

The merged data set shows more moves per device compared to processing
the two data sets separately. However, the number of moves per device remains
low. A low number of moves make it difficult to build detailed crowd-dynamics
models. The low number can be explained by us having few long moves during
the day and more short ones. The short moves are difficult to detect using WiFi
remote positioning.

6.5 Explaining the differences

We discovered big differences between the data sets obtained by recording
scans (PR) compared to the ones obtained by recording connections (AS). We
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expected the PR data set to be larger. Some devices never connect to the network
while the ones that do, do not stay connected all the time. When they are not
connected, devices can scan for WiFi networks and when they do, they can be
detected through the PR method.

The number of detections obtained using the two methods differs widely due
to the detection frequency. The frequency of detections for logging associations
by our system is 6 minutes. Probe Requests are sent with a higher frequency
and at irregular intervals.

What we discovered is that roaming does not function as we initially ex-
pected. Considering the 802.11 standard, when a device is connected to a
network it can scan for other access points in order to find and transfer to a
possibly better connection. Our expectation was that because of the roaming
mechanism devices continue to scan while they are connected. During our
comparison we discovered this is generally not the case. When a device is
connected it does not scan.

Roaming, the main reason for scanning while connected has many challenges
[145] and security considerations [146]. Devices avoid scanning because of
battery considerations. Take for instance the Android operating system: while
connected it scans for alternative access points only when the signal strength
for the current connection drops below a threshold. Windows devices let the
user configure a “Roaming aggressiveness” setting. Furthermore, some devices
have issues with WiFi roaming altogether. This indicates that some, if not most,
devices do not scan at all while connected. These issues with roaming for
some devices, although known by the mentioned companies and others, as is
presented in their websites has not been studied and we have found no scientific
paper that addresses it.

Having many devices that do not scan while connected explains why we
have so many detections in the AS data set that do not have a matching (similar
time, same sensor), or even worse, a correspondent (similar time) detection in
the PR data set. This does not completely explain the differences we observed
in stops and moves. If a device must scan in order to initially connect to a
network, we should see a PR detection before any group of AS detections.
Having those PR detections would allow us to detect similar moves. The lack
of such detections in the PR data set can be explained by the extensive use of
passive scans and the high loss rate of WiFi frames.

When we merge the two data sets and run the stop and moves algorithm on
the result, we obtain moves that were not detected when the algorithm was run
separately on the two data sets. An example would be the last move of device 3
from Figure 6.11, which we explain next.
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We selected five devices to represent in Figure 6.11. For each device we
placed a dot at the recording time of a detection in the AS, PR and AS+PR data
sets. The color of the dot corresponds to the color of the sensors from the map in
Figure 6.1. As we previously explained, a large difference in color translates into
a large distance between the sensors that recorded the detections. With blue, we
draw lines from the start to the end of a move. For each device we have six rows,
from top to bottom: AS detections, AS moves, PR detections, PR moves, AS+PR
detections and AS+PR moves. The moves are extracted from the detections
drawn on the row above. The black vertical lines represent the interval used for
analysis. They were obtained by applying the rules from Figure 6.4.
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Figure 6.11: Sample of devices detections, movements, for AS, PR and AS+PR (black
vars - common time period; blue lines - movement; greens and reds - position of sensor)

In Figure 6.11 we can observe how difficult it is for the algorithm to extract
moves. Detections are sparse for all traces. The moves, and the information is
extracted based on the chance of having detections at the right time. These six
examples are hand-picked to best show different scenarios from our data set,
but the sparsity and mismatches are common.

6.6 Summary

We showed that there are large differences between the AS and PR data sets.
These differences can be identified at any level, starting from the number of
devices detected, number of detections, time and position of detections and
even information in the form of stop and moves summary.

We explain what some of the causes for the differences are. Mainly devices
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do not send Probe Requests while connected. An interesting discovery was that
devices send at least one Probe Request frame with the real MAC address even
if they use MAC address randomization.

Given that there are significant differences between the two data sets, even
when abstracting the traces to lists of stops and moves, we explored the possi-
bility of merging the two data sets in order to obtain a more complete picture
and have more accurate traces. When running the stop and move algorithm
on the resulting data set, we observed that the list of moves increases beyond
the sum of moves extracted originally (from the two data sets separately). This
means the traces from the merged data set have finer granularity and more
complete information.

Considering most WiFi remote-positioning experiments gather only Probe
Request frames, our conclusion, that detections from connection logs add signifi-
cantly more information, raise important concerns about the completeness of the
information in these data sets. Our results show that WiFi remote-positioning
data sets gathered by collecting Probe Request frames miss information present
in the connection data set along with what we knew is missing information
for individuals that cannot be detected at all, either because their device is of-
fline, their WiFi module is stopped or because they do not carry a WiFi-enabled
device.
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CHAPTER 7

Conclusion and lessons learned

Positioning systems based on existing communication protocols open the way
on what can be achieved given large crowd dynamics data sets. They have
been used successfully in applications like self-positioning and indoor localiza-
tion. Furthermore, an extending body of research shows what can be achieved
with long-term data extracted by these systems, from facility management and
monitoring to security and automatic detection of social groups.

WiFi remote positioning is the most popular of the positioning technologies
based on communication protocols. This is because of the average positional ac-
curacy the system offers, offering more precision compared to the low accuracy
of GSM/4G systems and higher scalability compared to Bluetooth systems by
making it simpler to cover areas. Furthermore, cheap, commercial devices can
be repurposed into WiFi remote-positioning sensors, making platform deploy-
ments simple and inexpensive.

Even with the high interest in WiFi remote positioning, the characteristics
of these systems have not been thoroughly explored. It was obvious that WiFi
remote positioning could not be used to monitor every single individual (some
people simply do not carry WiFi-enabled devices), but it was not clear how
much information can be extracted using WiFi positioning (at least for the
people that carry WiFi devices).

In this thesis we showed that given the current assumptions, that there is
no control over the target devices and while trying to maintain privacy, the
information that can be extracted from crowd-dynamics monitoring systems
based on WiFi remote positioning is limited. The limitations are caused by:

A large number of devices with few detections. When we analyze the
number of detections per device, in all our data sets, we observe that they have
a Zipfian-like distribution. This means that few devices have many detections
(mostly static), many devices have very few detections and the rest are devices
for which we can build traces and extract movement.
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The positional accuracy is low (equal to the detection range of sensors -
about 100m) and techniques such as trilateration that could improve the accu-
racy can be rarely applied for outdoor environments (less than 10% of detections
are simultaneous). Even for simultaneous detections, the variation in RSSI from
device to device and based on the environment makes it impossible to increase
the accuracy of the resulted position. We showed this in depth in Chapter 3.

Small and varying frequency of recorded positions are the norm consider-
ing the target mobile devices are developed to extend battery life and be energy
efficient. This leads to huge gaps in traces that cannot be distinguished from the
person leaving the detection area.

More gaps are introduced when recording only part of the frames received
by the sensors (some implementations record only Probe Request frames). These
gaps appear because modern devices put an emphasis on energy saving and
start scanning for new networks only when the connection quality is low, and
broadcasting fewer Probe Request frames.

Low positional accuracy and small frequency of detections leads to anoma-
lies such as moving in circles. Missing detections are so frequent in WiFi that
it becomes common for devices to be detected at one sensor, then another, then
the first again, and so on. We have performed an experiment in our lab with two
identical sensors placed 50cm apart and the detections they recorded seemed
to show two different worlds, with only a small part of detections matching
between the two.

The combination of these properties explains why only a small amount
of information can be extracted from WiFi remote-positioning data sets. The
amount of tracing information can be correlated with the number of movements
which can be extracted. By having to compensate for anomalies like circular
movement, we can only extract long movements. In our experience, a movement
needs to cover at least 200m for it to be distinguishable from noise (tracing
anomalies). This means short walks, such as going across the street, may not
be detectable. By analyzing our data sets we observed that traces for most
devices do not contain a single movement and those that do, have only few
movements.

7.1 Contributions

During our research we addressed the questions from Chapter 1. The answers
to the questions are:

Question 1: Which positioning technology can be used to provide the highest
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amount of data for the highest number of individuals, and, as such, is best suited for
monitoring crowd dynamics?
• Chapter 2: We conducted a survey of positioning systems. Our survey

shows that remote positioning based on repurposed communication technolo-
gies is currently the only viable crowd-dynamics monitoring technique be-
cause it easily scales to many people. Particularly interesting is WiFi remote-
positioning because of the high number of data points it offers compared to the
alternatives.

Question 2: How is WiFi remote positioning implemented and what are the current
applications it is used for?
• Chapter 2: We conducted a survey on uses for WiFi remote-positioning

systems. We concluded that the technology is popular, especially for indoor ap-
plications. Other uses take advantage of data gathered over large time periods.
Furthermore, we described WiFi remote-positioning systems and implemen-
tation with more details than previous research. Interesting details represents
the frame types which can be recorded and what channel to use.

Question 3: What are the properties of traces extracted from data produced by WiFi
remote-positioning systems?
• Chapter 2: We conducted five data-gathering experiments using WiFi

remote positioning. Using the data from the five data sets, we showed that po-
sitions obtained from WiFi remote-positioning systems are sparse and traces
drawn from them have anomalies. The anomalies give the impression that
people are moving in circles. Any attempts to extract information, such as dis-
covering how many people moved from the position of one sensor to the other
in a given amount of time are disrupted. This cannot be correctly calculated
because the back and forth movement adds up to unrealistic values.

Question 4: Why are the traces sparse and what are the cyclic-movement anomalies
we observe? How can we mitigate the effect caused by said anomalies?
• Chapter 3: We showed that the circular-movement anomalies are caused

by a combination of low positioning accuracy, and low number of detections.
This means that a device is not detected by all the sensors that are in its range. It
is often that only one of the sensors detects the device, followed by another and
so on. The irregular detection range makes it possible for a device to be detected
at sensors that are unexpectedly far. We showed that traces can be smoothed
and most of the circular-movement anomalies can be removed. We compared
three algorithms for smoothing traces and compared the results using entropy
and dissimilarity to the original trace.

Question 5: What useful information can be extracted from positioning data in
order to build crowd-dynamics models and how can we quantify this information?
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• Chapter 4: We analyzed how traces are summarized in the literature. We
identified that stops and moves are good representatives of traces. They rep-
resent the summary of a trace and can be controlled by parameters such as
minimal stop duration. We compared different algorithms for extracting stops
and moves and identified “Stay Point Detection” to be the most promising one.
Because they are summaries, the number of stops and moves is a good repre-
sentative of how much information can be extracted given a crowd-dynamics
monitoring platform.

Question 6: How much crowd-dynamics information can we extract using WiFi
remote positioning and how can we increase this value?

In order to answer question 6, we need to address questions 7 and 8. After
we address them, we return to question 6 and draw our final conclusions.

Question 7 (part of question 6): Can we increase the amount of crowd-dynamics
information by adding more sensors and as such, increasing the amount of positioning
data?
• Chapter 5: Based on stops and moves we can summarize positioning

data sets and find how much information they contain. We showed that most
available information can be gathered using few sensors. Increasing the density
of sensors does not bring improvements, even worse, in some cases it can add
noise which hides movements.

Question 8 (part of question 6): Can we increase the amount of crowd-dynamics
information by using alternative WiFi data sources?
• Chapter 6: We compared a data set obtained by gathering probe request

frames with one extracted from connection logs. This showed that both data
sets contained much information that was not available in the other one. Fur-
thermore, combining the data sets offered more information, while remaining
still underwhelming. Based on these experiments, we discovered that most WiFi
remote-positioning deployments are missing significant portions of information
that could be extracted if more frame types were recorded or connection logs
were used alongside Probe Request frames.

Given the assumption that we cannot modify the communication protocol
and we cannot gain access to the target devices, we cannot improve the outputs
of WiFi remote-positioning systems.

To readdress question 6: Based on the answers to question 7 and 8 we
conclude that WiFi remote positioning offers an underwhelming amount of
information for crowd-dynamics systems. We showed that many of the move-
ments are invisible to these systems and there is no room for improvement by
adding more sensors as they would only offer redundant data.
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Main research question: To what extent can we model outdoor crowd dy-
namics based on current positioning technologies?

Large amounts of positioning data are required in order to build strong
crowd-dynamics models. After answering question 1, we have determined WiFi
remote positioning to be the technology that offers the most amount of position-
ing data. We answered question 2 and 3 in order to gain an understanding into
WiFi remote-positioning systems. Doing this, we discovered that positioning
data provided by these systems is sparse and traces drawn from these data
contain anomalies. We explain the anomalies when we answered question 4.

Crowd-dynamics models are stronger if they are based on more informa-
tion. We answered question 5 in order to find a way to measure how much
information can be extracted from positioning data. We discovered that the
amount of information is underwhelming and tried to identify ways to increase
it. When answering question 6 we discovered that not only can we not increase
the amount of information extracted from WiFi remote-positioning systems but
the same information can be extracted using fewer sensors (answer to question
7) and a lot of easily accessible information is missing from most positioning
data sets (answer to question 8). Even so, the amount of information remains
underwhelming.

Based on the findings in each of the chapters: We conclude that using WiFi
remote positioning to gather crowd-dynamics information for short time pe-
riods (1 day), for outdoor environments results in models that cannot accu-
rately represent reality. This is mostly due to the sparsity of data and low
positioning accuracy given the no-control-of-target nature of the technology.

7.2 Future Work

Current algorithms for parsing traces formed from positions with low accuracy
offer low accuracy. Improving these algorithms is difficult, if not impossible.
However, prediction, pattern matching, and interpolation can be used to poten-
tially improve the results. As such, positioning data, even from WiFi, may offer
more information.

Applications that require crowd-dynamics information need to be tested
against what can be offered through WiFi remote-positioning. For some ap-
plications the properties of traces obtained through WiFi technologies may be
sufficient. This needs to be determined on a per application basis.

The difference between outdoor and indoor positioning using the same
WiFi technology should be extensively analyzed. Indoor positioning has the
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advantage of working in small areas, meaning two sensors in the same room
are likely to detect the same frames. Receiving simultaneous frames enables
high accuracy positioning by applying trilateration.

All positioning systems based on communication protocols need to be tested
to the same degree. There is a clear potential and interest with regards to new
technologies such as 5G. These have the potential of offering more precise
positioning due to advancements such as beamforming, which could identify
not just the distance from a device, but also the direction.

There is no experiment that tries to compare the results of positioning
technologies based on communication protocols. One can imagine a data
gathering experiment that uses Bluetooth, WiFi and GSM/4G positioning simul-
taneously. Such an analysis can better describe the capabilities of these systems.
Furthermore, we should consider the gains of using multiple such systems
simultaneously. Other potential sources may vary. For instance, many social
networks gather location data. Positioning data is also stored in most pictures
taken with a smartphone. Although the combination of these data sources
implies an increase in accuracy and amount of information being gathered, it
raises serious privacy concerns that need to be addressed.

As with all monitoring technologies privacy remains an open issue. Al-
though our results show that identifying a person using only positioning data
from WiFi may be more difficult than expected, the possibility still exists, es-
pecially in the case of devices that broadcast at high frequencies. The privacy
issues can be explored not just for WiFi, but for all positioning technologies
based on repurposed communication protocols.

More large-scale experiments need to be conducted. Especially ones where
ground truth data is collected. With a large enough experiment, we can get
closer to understanding exactly what percentage of information can be extracted
by a positioning technology. Analysis can then reveal if there is a bias in the
data gathered introduced by the positioning technology.

New communication protocols, such as 5G need to be considered. As de-
ployment is just starting, we do not currently have enough devices that can use
it. This should change in the next few years and with various improvements in
the technology, such as beamforming, it will become extremely attractive for
monitoring crowds. The use of 5G may imply a larger number of devices that
can be tracked as well as increased positioning accuracy.
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